Advertisement

Basics for P.D.E. Systems

  • Nicholas D. Alikakos
  • Giorgio Fusco
  • Panayotis Smyrnelis
Chapter
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 91)

Abstract

The main object in this chapter is the stress-energy tensor, which is an algebraic fact implying several useful identities like the (weak) monotonicity formula, Gui’s Hamiltonian identities, and Pohozaev’ identities, for all solutions and all potentials W ≥ 0. Modica’s inequality holds in the scalar case and implies a strong monotonicity formula, but is not generally valid in the vector case. The triple junction on the plane is also introduced.

References

  1. 1.
    Alikakos, N.D.: Some basic facts on the system Δu −∇W(u) = 0. Proc. Am. Math. Soc. 139, 153–162 (2011)Google Scholar
  2. 2.
    Alikakos, N.D.: On the structure of phase transition maps for three or more coexisting phases. In: Chambolle, A., Novaga, M., Valdinoci, E. (eds.) Geometry and Partial Differential Equations, Proceedings, CRM series. Edizioni della Normale, Pisa (2013)Google Scholar
  3. 3.
    Alikakos, N.D., Faliagas, A.: The stress-energy tensor and Pohozaev’s identity for systems. Acta Math. Sci. 32(1), 433–439 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alikakos, N.D., Antonopoulos, P., Damialis, A.: Plateau angle conditions for the vector-valued Allen–Cahn equation. SIAM J. Math. Anal. 45(6), 3823–3837 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berestycki, H., Terracini, S., Wang, K., Wei, J.: On entire solutions of an elliptic system modeling phase transitiona. arxiv: 1204.1038Google Scholar
  6. 6.
    Bethuel, F., Brezis, H., Helein, F.: Ginzburg-Landau vortices. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhäuser, Basel (1994)Google Scholar
  7. 7.
    Bronsard, L., Reitich, F.: On three-phase boundary motion and the singular limit of a vector-valued Ginzburg–Landau equation. Arch. Ration. Mech. Anal. 124(4), 355–379 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bronsard, L., Gui, C., Schatzman, M.: A three-layered minimizer in \({\mathbb R}^2\) for a variational problem with a symmetric three-well potential. Commun. Pure Appl. Math. 49(7), 677–715 (1996)Google Scholar
  9. 9.
    Caffarelli, L., Lin, F.H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21(3), 847–862 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Caffarelli, L., Garofalo, N., Segala, F.: A Gradient bound for entire solutions of quasi-linear equations and its consequences. Commun. Pure Appl. Math. 47(11), 1457–1473 (1994)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Caffarelli, L., Karakhanyan, A.L., Lin, F.H.: The geometry of solutions to a segregation problem for nondivergence systems. J. Fixed Point Theory Appl. 5, 319–351 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)Google Scholar
  13. 13.
    Faliagas, A.C.: On the equivalence of Euler-Lagrange and Noether equations. Math. Phys. Anal. Geom. 19, 1 (2016). https://doi.org/10.1007/s11040-016-9203-3 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Farina, A.: Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg–Landau systems in \({\mathbb R}^K\). C. R. Acad. Sci. Paris Ser. I Math. 325(5), 487–491 (1997)Google Scholar
  15. 15.
    Farina, A.: Two results on entire solutions of Ginzburg–Landau system in higher dimensions. J. Funct. Anal. 214(2), 386–395 (2004)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Farina, A.: Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete Contin. Dynam. Syst. 34(6), 2505–2511 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Farina, A., Valdinoci, E.: The state of art for a conjecture of De Giorgi and related questions. In: Reaction-Diffusion Systems and Viscosity Solutions. World Scientific, Singapore (2008)Google Scholar
  18. 18.
    Farina, A., Valdinoci, E.: A pointwise gradient estimate in possibly unbounded domains with nonnegative mean curvature. Adv. Math. 225, 2808–2827 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Farina, A., Sciunzi, B., Valdinoci, E.: Bernstein and De Giorgi type problems: new results via a geometric approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(7), 741–791 (2008)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Giaquinta, M., Hildebrandt, S.: Calculus of Variations I. The Lagrangian Formalism. Grundlehren der mathematischen Wissenschaften, vol. 310. Springer, Berlin (2010)Google Scholar
  21. 21.
    Gui, C.: Hamiltonian identities for partial differential equations. J. Funct. Anal. 254(4), 904–933 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gui, C., Malchiodi, A., Xu, H.: Axial symmetry of some steady state solutions to nonlinear Schrodinger equations. Proc. Am. Math. Soc. 139, 1023–1032 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hagan, P.S.: Spiral waves in reaction-diffusion equations. SIAM J. Appl. Math. 42(4), 762–786 (1982)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ilmanen, T.: Convergence of the Allen–Cahn equation to Brakke’s motion by mean curvature. J. Differ. Geom. 38(2), 417–461 (1993)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Landau, L.D., Lifschitz, E.M.: Course of Theoretical Physics. Classical Field Theory, vol. 2, 4th edn. Butterworth-Heinemann, Oxford (1980)CrossRefGoogle Scholar
  26. 26.
    Mironescu, P.: Local minimizers for the Ginzburg-Landau equation are radially symmetric. C. R. Acad. Sci. Paris Sér. I Math. 323, 593–598 (1996)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Modica, L.: Monotonicity of the energy for entire solutions of semilinear elliptic equations. In: Colombini, F., Marino, A., Modica, L. (eds.) Partial differential equations and the calculus of variations. Essays in honor of Ennio De Giorgi, vol. 2, pp. 843–850. Birkhäuser, Boston (1989)Google Scholar
  28. 28.
    Modica, L.: A Gradient bound and a Liouville Theorem for nonlinear Poisson equations. Commun. Pure Appl. Math. 38(5), 679–684 (1985)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau Model. Progress in Nonlinear Differential Equations and Their Applications, vol. 70. Birkhäuser, Boston (2007)Google Scholar
  30. 30.
    Schoen, R.: Lecture Notes on General Relativity. Stanford University, Stanford (2009)Google Scholar
  31. 31.
    Simon, L.: Lectures on Geometric Measure Theory. In: Proceedings of the Centre for Mathematics and Its Applications, vol. 3. Australian National University, Canberra (1984)Google Scholar
  32. 32.
    Smyrnelis, P.: Gradient estimates for semilinear elliptic systems and other related results. Proc. R. Soc. Edinb. Sect. A 145(6), 1313–1330 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Sperb, R.: Maximum Principles and Their Applications. Mathematics in Science and Engineering, vol. 157. Academic Press, New York (1981)Google Scholar
  34. 34.
    Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. A Series of Modern Surveys in Mathematics, vol. 34, 4th edn. Springer, Berlin (2008)Google Scholar
  35. 35.
    White, B.: Existence of least energy configurations of immiscible fluids. J. Geom. Anal. 6, 151–161 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nicholas D. Alikakos
    • 1
  • Giorgio Fusco
    • 2
  • Panayotis Smyrnelis
    • 3
  1. 1.Department of MathematicsNational and Kapodistrian UniversityAthensGreece
  2. 2.Department of MathematicsUniversity of L’AquilaCoppitoItaly
  3. 3.Center for Mathematical ModelingUniversity of ChileSantiagoChile

Personalised recommendations