Advertisement

Microbiome and Gut Immunity: T Cells

  • Joern Pezoldt
  • Juhao Yang
  • Mangge Zou
  • Jochen Huehn
Chapter

Abstract

The gastrointestinal tract is colonized with a huge number of microbes, which are instrumental for the development, homeostasis, and fine-tuning of the immune system. Recent evidence suggests that microbiota very efficiently modulates conventional and regulatory T cell responses that are required for effective host defense against invading pathogens and avoidance of autoimmunity and other immunopathologic conditions, respectively. In this review, we discuss the interplay between the microbiota and T cells, with a particular focus on the de novo induction of regulatory T cells within gut-draining lymph nodes (LNs), the impact of microbiota-derived metabolites on T cell differentiation, and the functional role of unique regulatory T cell subsets within the intestinal immune system.

References

  1. Abbas, A. K., Murphy, K. M., & Sher, A. (1996). Functional diversity of helper T lymphocytes. Nature, 383, 787–793.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abe, J., Shichino, S., Ueha, S., Hashimoto, S., Tomura, M., Inagaki, Y., Stein, J. V., & Matsushima, K. (2014). Lymph node stromal cells negatively regulate antigen-specific CD4+ T cell responses. Journal of Immunology, 193, 1636–1644.CrossRefGoogle Scholar
  3. Acton, S. E., Farrugia, A. J., Astarita, J. L., Mourao-Sa, D., Jenkins, R. P., Nye, E., Hooper, S., van Blijswijk, J., Rogers, N. C., Snelgrove, K. J., et al. (2014). Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature, 514, 498–502.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Agace, W. W. (2006). Tissue-tropic effector T cells: Generation and targeting opportunities. Nature Reviews Immunology, 6, 682–692.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ahrendt, M., Hammerschmidt, S. I., Pabst, O., Pabst, R., & Bode, U. (2008). Stromal cells confer lymph node-specific properties by shaping a unique microenvironment influencing local immune responses. Journal of Immunology, 181, 1898–1907.CrossRefGoogle Scholar
  6. Allen, J. E., & Maizels, R. M. (2011). Diversity and dialogue in immunity to helminths. Nature Reviews Immunology, 11, 375–388.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Amsen, D., Spilianakis, C. G., & Flavell, R. A. (2009). How are T(H)1 and T(H)2 effector cells made? Current Opinion in Immunology, 21, 153–160.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., Liu, H., Cross, J. R., Pfeffer, K., Coffer, P. J., & Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504, 451–455.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., Cheng, G., Yamasaki, S., Saito, T., Ohba, Y., et al. (2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 331, 337–341.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Atarashi, K., Tanoue, T., Oshima, K., Suda, W., Nagano, Y., Nishikawa, H., Fukuda, S., Saito, T., Narushima, S., Hase, K., et al. (2013). Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature, 500, 232–236.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bach, J. F. (2003). Regulatory T cells under scrutiny. Nature Reviews Immunology, 3, 189–198.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bain, C. C., & Mowat, A. M. (2014). Macrophages in intestinal homeostasis and inflammation. Immunological Reviews, 260, 102–117.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bajenoff, M. (2012). Stromal cells control soluble material and cellular transport in lymph nodes. Frontiers in Immunology, 3, 304.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Banchereau, J., Pascual, V., & O’Garra, A. (2012). From IL-2 to IL-37: The expanding spectrum of anti-inflammatory cytokines. Nature Immunology, 13, 925–931.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Baptista, A. P., Roozendaal, R., Reijmers, R. M., Koning, J. J., Unger, W. W., Greuter, M., Keuning, E. D., Molenaar, R., Goverse, G., Sneeboer, M. M., et al. (2014). Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. eLife, 3, e04433.PubMedCentralCrossRefGoogle Scholar
  16. Barthels, C., Ogrinc, A., Steyer, V., Meier, S., Simon, F., Wimmer, M., Blutke, A., Straub, T., Zimber-Strobl, U., Lutgens, E., et al. (2017). CD40-signalling abrogates induction of RORγt+ Treg cells by intestinal CD103+ DCs and causes fatal colitis. Nature Communications, 8, 14715.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157, 121–141.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Benson, M. J., Pino-Lagos, K., Rosemblatt, M., & Noelle, R. J. (2007). All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. The Journal of Experimental Medicine, 204, 1765–1774.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blander, J. M., Torchinsky, M. B., & Campisi, L. (2012). Revisiting the old link between infection and autoimmune disease with commensals and T helper 17 cells. Immunologic Research, 54, 50–68.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bopp, T., Becker, C., Klein, M., Klein-Hessling, S., Palmetshofer, A., Serfling, E., Heib, V., Becker, M., Kubach, J., Schmitt, S., et al. (2007). Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. The Journal of Experimental Medicine, 204, 1303–1310.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Breese, E., Braegger, C. P., Corrigan, C. J., Walker-Smith, J. A., & Macdonald, T. T. (1993). Interleukin-2- and interferon-γ-secreting T cells in normal and diseased human intestinal mucosa. Immunology, 78, 5.Google Scholar
  22. Cao, X., Cai, S. F., Fehniger, T. A., Song, J., Collins, L. I., Piwnica-Worms, D. R., & Ley, T. J. (2007). Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 27, 635–646.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cebula, A., Seweryn, M., Rempala, G. A., Pabla, S. S., McIndoe, R. A., Denning, T. L., Bry, L., Kraj, P., Kisielow, P., & Ignatowicz, L. (2013). Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature, 497, 258–262.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cerovic, V., Houston, S. A., Scott, C. L., Aumeunier, A., Yrlid, U., Mowat, A. M., & Milling, S. W. (2013). Intestinal CD103 dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunology, 6, 104–113.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cerovic, V., Bain, C. C., Mowat, A. M., & Milling, S. W. (2014). Intestinal macrophages and dendritic cells: What’s the difference? Trends in Immunology, 35, 270–277.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chellappa, S., Hugenschmidt, H., Hagness, M., Line, P. D., Labori, K. J., Wiedswang, G., Tasken, K., & Aandahl, E. M. (2016). Regulatory T cells that co-express RORγt and FOXP3 are pro-inflammatory and immunosuppressive and expand in human pancreatic cancer. Oncoimmunology, 5, e1102828.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ciofani, M., & Zuniga-Pflucker, J. C. (2010). Determining gd versus ab T cell development. Nature Reviews Immunology, 10, 657–663.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Coombes, J. L., Siddiqui, K. R., Arancibia-Carcamo, C. V., Hall, J., Sun, C. M., Belkaid, Y., & Powrie, F. (2007). A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGFb and retinoic acid-dependent mechanism. The Journal of Experimental Medicine, 204, 1757–1764.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Coquet, J. M., Middendorp, S., van der Horst, G., Kind, J., Veraar, E. A., Xiao, Y., Jacobs, H., & Borst, J. (2013). The CD27 and CD70 costimulatory pathway inhibits effector function of T helper 17 cells and attenuates associated autoimmunity. Immunity, 38, 53–65.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cording, S., Wahl, B., Kulkarni, D., Chopra, H., Pezoldt, J., Buettner, M., Dummer, A., Hadis, U., Heimesaat, M., Bereswill, S., et al. (2014). The intestinal micro-environment imprints stromal cells to promote efficient Treg induction in gut-draining lymph nodes. Mucosal Immunology, 7, 359–368.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cretney, E., Kallies, A., & Nutt, S. L. (2013). Differentiation and function of Foxp3+ effector regulatory T cells. Trends in Immunology, 34, 74–80.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Crohn, B. B., Ginzburg, L., & Oppenheimer, G. D. (1932). Regional ileitis: A pathologic and clinical entity. Journal of the American Medical Association, 99, 1323–1329.CrossRefGoogle Scholar
  33. Cui, G., Zhang, Y., Gong, Z., Zhang, J. Z., & Zang, Y. Q. (2009). Induction of CD4+CD25+Foxp3+ regulatory T cell response by glatiramer acetate in type 1 diabetes. Cell Research, 19, 574–583.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dambacher, J., Beigel, F., Zitzmann, K., De Toni, E. N., Goke, B., Diepolder, H. M., Auernhammer, C. J., & Brand, S. (2009). The role of the novel Th17 cytokine IL-26 in intestinal inflammation. Gut, 58, 1207–1217.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Darrasse-Jeze, G., Deroubaix, S., Mouquet, H., Victora, G. D., Eisenreich, T., Yao, K. H., Masilamani, R. F., Dustin, M. L., Rudensky, A., Liu, K., & Nussenzweig, M. C. (2009). Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. The Journal of Experimental Medicine, 206, 1853–1862.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Delacher, M., Imbusch, C. D., Weichenhan, D., Breiling, A., Hotz-Wagenblatt, A., Trager, U., Hofer, A. C., Kagebein, D., Wang, Q., Frauhammer, F., et al. (2017). Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nature Immunology, 18(10), 1160–1172.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dubrot, J., Duraes, F. V., Potin, L., Capotosti, F., Brighouse, D., Suter, T., LeibundGut-Landmann, S., Garbi, N., Reith, W., Swartz, M. A., & Hugues, S. (2014). Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance. The Journal of Experimental Medicine, 211, 1153–1166.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dudda, J. C., Lembo, A., Bachtanian, E., Huehn, J., Siewert, C., Hamann, A., Kremmer, E., Forster, R., & Martin, S. F. (2005). Dendritic cells govern induction and reprogramming of polarized tissue-selective homing receptor patterns of T cells: Important roles for soluble factors and tissue microenvironments. European Journal of Immunology, 35, 1056–1065.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dwyer, K. M., Deaglio, S., Gao, W., Friedman, D., Strom, T. B., & Robson, S. C. (2007). CD39 and control of cellular immune responses. Purinergic Signalling, 3, 171–180.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ebbo, M., Crinier, A., Vely, F., & Vivier, E. (2017). Innate lymphoid cells: Major players in inflammatory diseases. Nature Reviews Immunology, 17(11), 665–678.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Elinav, E., Strowig, T., Kau, A. L., Henao-Mejia, J., Thaiss, C. A., Booth, C. J., Peaper, D. R., Bertin, J., Eisenbarth, S. C., Gordon, J. I., & Flavell, R. A. (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell, 145, 745–757.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Elson, C. O., Graeff, A. S., James, S. P., & Strober, W. (1981). Covert suppressor T cells in Crohn’s disease. Gastroenterology, 80, 1513–1521.PubMedPubMedCentralGoogle Scholar
  43. Eyerich, S., Eyerich, K., Pennino, D., Carbone, T., Nasorri, F., Pallotta, S., Cianfarani, F., Odorisio, T., Traidl-Hoffmann, C., Behrendt, H., et al. (2009). Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. The Journal of Clinical Investigation, 119, 3573–3585.PubMedPubMedCentralGoogle Scholar
  44. Feuerer, M., Hill, J. A., Kretschmer, K., von Boehmer, H., Mathis, D., & Benoist, C. (2010). Genomic definition of multiple ex vivo regulatory T cell subphenotypes. Proceedings of the National Academy of Sciences of the United States of America, 107, 5919–5924.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fletcher, A. L., Lukacs-Kornek, V., Reynoso, E. D., Pinner, S. E., Bellemare-Pelletier, A., Curry, M. S., Collier, A. R., Boyd, R. L., & Turley, S. J. (2010). Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. The Journal of Experimental Medicine, 207, 689–697.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fletcher, A. L., Acton, S. E., & Knoblich, K. (2015). Lymph node fibroblastic reticular cells in health and disease. Nature Reviews Immunology, 15, 350–361.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Floess, S., Freyer, J., Siewert, C., Baron, U., Olek, S., Polansky, J., Schlawe, K., Chang, H. D., Bopp, T., Schmitt, E., et al. (2007). Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biology, 5, e38.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Fontenot, J. D., Gavin, M. A., & Rudensky, A. Y. (2003). Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology, 4, 330–336.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Franke, A., McGovern, D. P., Barrett, J. C., Wang, K., Radford-Smith, G. L., Ahmad, T., Lees, C. W., Balschun, T., Lee, J., Roberts, R., et al. (2010). Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nature Genetics, 42, 1118–1125.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fujimoto, K., Karuppuchamy, T., Takemura, N., Shimohigoshi, M., Machida, T., Haseda, Y., Aoshi, T., Ishii, K. J., Akira, S., & Uematsu, S. (2011). A new subset of CD103+CD8a+ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity. Journal of Immunology, 186, 6287–6295.CrossRefGoogle Scholar
  51. Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., et al. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504, 446–450.CrossRefGoogle Scholar
  52. Fuss, I. J., Heller, F., Boirivant, M., Leon, F., Yoshida, M., Fichtner-Feigl, S., Yang, Z., Exley, M., Kitani, A., Blumberg, R. S., et al. (2004). Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. The Journal of Clinical Investigation, 113, 1490–1497.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gavin, M. A., Rasmussen, J. P., Fontenot, J. D., Vasta, V., Manganiello, V. C., Beavo, J. A., & Rudensky, A. Y. (2007). Foxp3-dependent programme of regulatory T-cell differentiation. Nature, 445, 771–775.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gerlach, K., Hwang, Y., Nikolaev, A., Atreya, R., Dornhoff, H., Steiner, S., Lehr, H. A., Wirtz, S., Vieth, M., Waisman, A., et al. (2014). TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nature Immunology, 15, 676–686.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gerner, M. Y., Kastenmuller, W., Ifrim, I., Kabat, J., & Germain, R. N. (2012). Histo-cytometry: A method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity, 37, 364–376.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gottschalk, R. A., Corse, E., & Allison, J. P. (2012). Expression of Helios in peripherally induced Foxp3+ regulatory T cells. Journal of Immunology, 188, 976–980.CrossRefGoogle Scholar
  57. Gretz, J. E., Norbury, C. C., Anderson, A. O., Proudfoot, A. E., & Shaw, S. (2000). Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. The Journal of Experimental Medicine, 192, 1425–1440.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gross, M., Salame, T. M., & Jung, S. (2015). Guardians of the Gut – murine intestinal macrophages and dendritic cells. Frontiers in Immunology, 6, 254.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Guo, X., Qiu, J., Tu, T., Yang, X., Deng, L., Anders, R. A., Zhou, L., & Fu, Y. X. (2014). Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection. Immunity, 40, 25–39.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hadis, U., Wahl, B., Schulz, O., Hardtke-Wolenski, M., Schippers, A., Wagner, N., Muller, W., Sparwasser, T., Forster, R., & Pabst, O. (2011). Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity, 34, 237–246.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Halim, L., Romano, M., McGregor, R., Correa, I., Pavlidis, P., Grageda, N., Hoong, S. J., Yuksel, M., Jassem, W., Hannen, R. F., et al. (2017). An Atlas of human regulatory T helper-like cells reveals features of Th2-like Tregs that support a tumorigenic environment. Cell Reports, 20, 757–770.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hall, J. A., Bouladoux, N., Sun, C. M., Wohlfert, E. A., Blank, R. B., Zhu, Q., Grigg, M. E., Berzofsky, J. A., & Belkaid, Y. (2008). Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity, 29, 637–649.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Halpern, B., Zweibaum, A., Oriol Palau, R., & Monrard, J. C. (1967). Experimental immune ulcerative colitis. In: Miescher, P., & Grabar, P. (Eds.), International symposium (pp. 161–178). Basel.Google Scholar
  64. Hammerschmidt, S. I., Ahrendt, M., Bode, U., Wahl, B., Kremmer, E., Forster, R., & Pabst, O. (2008). Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo. The Journal of Experimental Medicine, 205, 2483–2490.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Happel, K. I., Dubin, P. J., Zheng, M., Ghilardi, N., Lockhart, C., Quinton, L. J., Odden, A. R., Shellito, J. E., Bagby, G. J., Nelson, S., & Kolls, J. K. (2005). Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. The Journal of Experimental Medicine, 202, 761–769.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Haribhai, D., Williams, J. B., Jia, S., Nickerson, D., Schmitt, E. G., Edwards, B., Ziegelbauer, J., Yassai, M., Li, S. H., Relland, L. M., et al. (2011). A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity, 35, 109–122.PubMedPubMedCentralCrossRefGoogle Scholar
  67. He, Z., Ma, J., Wang, R., Zhang, J., Huang, Z., Wang, F., Sen, S., Rothenberg, E. V., & Sun, Z. (2017). A two-amino-acid substitution in the transcription factor RORγt disrupts its function in TH17 differentiation but not in thymocyte development. Nature Immunology, 18(10), 1128–1113.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Heller, F., Florian, P., Bojarski, C., et al. (2005). Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 129, 15.CrossRefGoogle Scholar
  69. Hill, J. A., Feuerer, M., Tash, K., Haxhinasto, S., Perez, J., Melamed, R., Mathis, D., & Benoist, C. (2007). Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity, 27, 786–800.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hill, J. A., Hall, J. A., Sun, C. M., Cai, Q., Ghyselinck, N., Chambon, P., Belkaid, Y., Mathis, D., & Benoist, C. (2008). Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. Immunity, 29, 758–770.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hodgson, H. J., Wands, J. R., & Isselbacher, K. J. (1978). Decreased suppressor cell activity in inflammatory bowel disease. Clinical and Experimental Immunology, 32, 451–458.PubMedPubMedCentralGoogle Scholar
  72. Hogquist, K. A., Baldwin, T. A., & Jameson, S. C. (2005). Central tolerance: Learning self-control in the thymus. Nature Reviews Immunology, 5, 772–782.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Hori, S., Nomura, T., & Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science, 299, 1057–1061.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Huehn, J., & Beyer, M. (2015). Epigenetic and transcriptional control of Foxp3 regulatory T cells. Seminars in Immunology, 27, 10–18.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Huehn, J., Polansky, J. K., & Hamann, A. (2009). Epigenetic control of FOXP3 expression: The key to a stable regulatory T-cell lineage? Nature Reviews Immunology, 9, 83–89.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Infante-Duarte, C., Horton, H. F., Byrne, M. C., & Kamradt, T. (2000). Microbial lipopeptides induce the production of IL-17 in Th cells. The Journal of Immunology, 165, 6107–6115.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ivanov, I. I., Atarashi, K., Manel, N., Brodie, E. L., Shima, T., Karaoz, U., Wei, D., Goldfarb, K. C., Santee, C. A., Lynch, S. V., et al. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 139, 485–498.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Josefowicz, S. Z., Lu, L. F., & Rudensky, A. Y. (2012a). Regulatory T cells: Mechanisms of differentiation and function. Annual Review of Immunology, 30, 531–564.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Josefowicz, S. Z., Niec, R. E., Kim, H. Y., Treuting, P., Chinen, T., Zheng, Y., Umetsu, D. T., & Rudensky, A. Y. (2012b). Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature, 482, 395–399.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kamada, N., Seo, S. U., Chen, G. Y., & Nunez, G. (2013). Role of the gut microbiota in immunity and inflammatory disease. Nature Reviews Immunology, 13, 321–335.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kamath, A. T., Henri, S., Battye, F., Tough, D. F., & Shortman, K. (2002). Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood, 100, 1734–1741.PubMedPubMedCentralGoogle Scholar
  82. Kang, S. G., Lim, H. W., Andrisani, O. M., Broxmeyer, H. E., & Kim, C. H. (2007). Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. Journal of Immunology, 179, 3724–3733.CrossRefGoogle Scholar
  83. Kaplan, M. H. (2013). Th9 cells: Differentiation and disease. Immunological Reviews, 252, 104–115.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kaplan, M. H., Hufford, M. M., & Olson, M. R. (2015). The development and in vivo function of T helper 9 cells. Nature Reviews Immunology, 15, 295–307.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Khan, O., Headley, M., Gerard, A., Wei, W., Liu, L., & Krummel, M. F. (2011). Regulation of T cell priming by lymphoid stroma. PLoS One, 6, e26138.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kim, H. P., & Leonard, W. J. (2007). CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: A role for DNA methylation. The Journal of Experimental Medicine, 204, 1543–1551.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M., & Kim, C. H. (2013a). Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology, 145(396–406), e391–e310.Google Scholar
  88. Kim, S. V., Xiang, W. V., Kwak, C., Yang, Y., Lin, X. W., Ota, M., Sarpel, U., Rifkin, D. B., Xu, R., & Littman, D. R. (2013b). GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science, 340(6139), 1456–1459.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kim, K. S., Hong, S. W., Han, D., Yi, J., Jung, J., Yang, B. G., Lee, J. Y., Lee, M., & Surh, C. D. (2016). Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science, 351(6275), 858–863.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Kinnebrew, M. A., Buffie, C. G., Diehl, G. E., Zenewicz, L. A., Leiner, I., Hohl, T. M., Flavell, R. A., Littman, D. R., & Pamer, E. G. (2012). Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity, 36, 276–287.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Klein, L., Hinterberger, M., Wirnsberger, G., & Kyewski, B. (2009). Antigen presentation in the thymus for positive selection and central tolerance induction. Nature Reviews Immunology, 9, 833–844.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kluger, M. A., Luig, M., Wegscheid, C., Goerke, B., Paust, H. J., Brix, S. R., Yan, I., Mittrucker, H. W., Hagl, B., Renner, E. D., et al. (2014). Stat3 programs Th17-specific regulatory T cells to control GN. Journal of the American Society of Nephrology, 25, 1291–1302.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kluger, M. A., Meyer, M. C., Nosko, A., Goerke, B., Luig, M., Wegscheid, C., Tiegs, G., Stahl, R. A., Panzer, U., & Steinmetz, O. M. (2016). RORγt+Foxp3+ cells are an independent bifunctional regulatory T cell lineage and mediate crescentic GN. Journal of the American Society of Nephrology, 27, 454–465.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Korn, L. L., Hubbeling, H. G., Porrett, P. M., Yang, Q., Barnett, L. G., & Laufer, T. M. (2014). Regulatory T cells occupy an isolated niche in the intestine that is antigen independent. Cell Reports, 9, 1567–1573.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Kosiewicz, M. M., Zirnheld, A. L., & Alard, P. (2011). Gut microbiota, immunity, and disease: A complex relationship. Frontiers in Microbiology, 2, 180.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kuhn, K. A., & Stappenbeck, T. S. (2013). Peripheral education of the immune system by the colonic microbiota. Seminars in Immunology, 25, 364–369.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Laouar, A., Haridas, V., Vargas, D., Zhinan, X., Chaplin, D., van Lier, R. A., & Manjunath, N. (2005). CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nature Immunology, 6, 698–706.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lathrop, S. K., Bloom, S. M., Rao, S. M., Nutsch, K., Lio, C. W., Santacruz, N., Peterson, D. A., Stappenbeck, T. S., & Hsieh, C. S. (2011). Peripheral education of the immune system by colonic commensal microbiota. Nature, 478, 250–254.PubMedPubMedCentralCrossRefGoogle Scholar
  99. LeibundGut-Landmann, S., Gross, O., Robinson, M. J., Osorio, F., Slack, E. C., Tsoni, S. V., Schweighoffer, E., Tybulewicz, V., Brown, G. D., Ruland, J., & Reis e Sousa, C. (2007). Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nature Immunology, 8, 630–638.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Leung, J. M., Davenport, M., Wolff, M. J., Wiens, K. E., Abidi, W. M., Poles, M. A., Cho, I., Ullman, T., Mayer, L., & Loke, P. (2014). IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunology, 7, 124–133.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Littman, D. R., & Rudensky, A. Y. (2010). Th17 and regulatory T cells in mediating and restraining inflammation. Cell, 140, 845–858.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lukacs-Kornek, V., Malhotra, D., Fletcher, A. L., Acton, S. E., Elpek, K. G., Tayalia, P., Collier, A. R., & Turley, S. J. (2011). Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nature Immunology, 12, 1096–1104.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Macatonia, S. E., Hosken, N. A., Litton, M., Vieira, P., Hsieh, C. S., Culpepper, J. A., Wysocka, M., Trinchieri, G., Murphy, K. M., & O’Garra, A. (1995). Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. Journal of Immunology, 154, 5071–5079.Google Scholar
  104. Malhotra, D., Fletcher, A. L., Astarita, J., Lukacs-Kornek, V., Tayalia, P., Gonzalez, S. F., Elpek, K. G., Chang, S. K., Knoblich, K., Hemler, M. E., et al. (2012). Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nature Immunology, 13, 499–510.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Matteoli, G., Mazzini, E., Iliev, I. D., Mileti, E., Fallarino, F., Puccetti, P., Chieppa, M., & Rescigno, M. (2010). Gut CD103+ dendritic cells express indoleamine 2,3-dioxygenase which influences T regulatory/T effector cell balance and oral tolerance induction. Gut, 59, 595–604.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Matzinger, P., & Kamala, T. (2011). Tissue-based class control: The other side of tolerance. Nature Reviews Immunology, 11, 221–230.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., & Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122, 107–118.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mazmanian, S. K., Round, J. L., & Kasper, D. L. (2008). A microbial symbiosis factor prevents intestinal inflammatory disease. Nature, 453, 620–625.PubMedPubMedCentralCrossRefGoogle Scholar
  109. McGovern, D., & Powrie, F. (2007). The IL23 axis plays a key role in the pathogenesis of IBD. Gut, 56, 1333–1336.PubMedPubMedCentralCrossRefGoogle Scholar
  110. McGovern, D. P., Gardet, A., Torkvist, L., Goyette, P., Essers, J., Taylor, K. D., Neale, B. M., Ong, R. T., Lagace, C., Li, C., et al. (2010). Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nature Genetics, 42, 332–337.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature, 449, 819–826.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mee, A. S., McLaughlin, J. E., Hodgson, H. J. F., & Jewell, D. P. (1979). Chronic immune colitis in rabbits. Gut Microbes, 20(1), 1–5.CrossRefGoogle Scholar
  113. Merad, M., Sathe, P., Helft, J., Miller, J., & Mortha, A. (2013). The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology, 31, 563–604.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Mestecky, J., McGhee, J. R., Bienenstock, J., Lamm, M. E., Strober, W., Cebra, J. J., Mayer, L., Pearay, L. O., & Russel, M. W. (2015). Historical aspects of mucosal immunology, vol 4.Google Scholar
  115. Molenaar, R., Greuter, M., van der Marel, A. P., Roozendaal, R., Martin, S. F., Edele, F., Huehn, J., Forster, R., O’Toole, T., Jansen, W., et al. (2009). Lymph node stromal cells support dendritic cell-induced gut-homing of T cells. Journal of Immunology, 183, 6395–6402.CrossRefGoogle Scholar
  116. Molenaar, R., Knippenberg, M., Goverse, G., Olivier, B. J., de Vos, A. F., O’Toole, T., & Mebius, R. E. (2011). Expression of retinaldehyde dehydrogenase enzymes in mucosal dendritic cells and gut-draining lymph node stromal cells is controlled by dietary vitamin A. Journal of Immunology, 186, 1934–1942.CrossRefGoogle Scholar
  117. Mosmann, T. R., & Coffman, R. L. (1989). TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annual Review of Immunology, 7, 145–173.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Mowat, A. M., & Agace, W. W. (2014). Regional specialization within the intestinal immune system. Nature Reviews Immunology, 14, 667–685.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mucida, D., Park, Y., Kim, G., Turovskaya, O., Scott, I., Kronenberg, M., & Cheroutre, H. (2007). Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science, 317, 256–260.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Murai, M., Turovskaya, O., Kim, G., Madan, R., Karp, C. L., Cheroutre, H., & Kronenberg, M. (2009). Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nature Immunology, 10, 1178–1184.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Nawaf, M. G., Ulvmar, M. H., Withers, D. R., McConnell, F. M., Gaspal, F. M., Webb, G. J., Jones, N. D., Yagita, H., Allison, J. P., & Lane, P. J. L. (2017). Concurrent OX40 and CD30 ligand blockade abrogates the CD4-driven autoimmunity associated with CTLA4 and PD1 blockade while preserving excellent anti-CD8 tumor immunity. Journal of Immunology, 199, 974–981.CrossRefGoogle Scholar
  122. Neurath, M. F. (2014). Cytokines in inflammatory bowel disease. Nature Reviews Immunology, 14, 329–342.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Ohkura, N., Hamaguchi, M., Morikawa, H., Sugimura, K., Tanaka, A., Ito, Y., Osaki, M., Tanaka, Y., Yamashita, R., Nakano, N., et al. (2012). T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity, 37, 785–799.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ohnmacht, C., Park, J. H., Cording, S., Wing, J. B., Atarashi, K., Obata, Y., Gaboriau-Routhiau, V., Marques, R., Dulauroy, S., Fedoseeva, M., et al. (2015). Mucosal immunology. The microbiota regulates type 2 immunity through RORγt+ T cells. Science, 349, 989–993.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Onderdonk, A. B., Hermos, J. A., Dzink, J. L., & Bartlett, J. G. (1978). Protective effect of metronidazole in experimental ulcerative colitis. Gastroenterology, 74, 521–526.PubMedPubMedCentralGoogle Scholar
  126. Pabst, O., & Bernhardt, G. (2013). On the road to tolerance-generation and migration of gut regulatory T cells. European Journal of Immunology, 43, 1422–1425.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J., & Lenardo, M. J. (2007). CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature Immunology, 8, 1353–1362.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Panea, C., Farkas, A. M., Goto, Y., Abdollahi-Roodsaz, S., Lee, C., Koscso, B., Gowda, K., Hohl, T. M., Bogunovic, M., & Ivanov, I. I. (2015). Intestinal monocyte-derived macrophages control commensal-specific Th17 responses. Cell Reports, 12, 1314–1324.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Park, H. J., Park, J. S., Jeong, Y. H., Son, J., Ban, Y. H., Lee, B. H., Chen, L., Chang, J., Chung, D. H., Choi, I., & Ha, S. J. (2015). PD-1 upregulated on regulatory T cells during chronic virus infection enhances the suppression of CD8+ T cell immune response via the interaction with PD-L1 expressed on CD8+ T cells. Journal of Immunology, 194, 5801–5811.CrossRefGoogle Scholar
  130. Parks, O. B., Pociask, D. A., Hodzic, Z., Kolls, J. K., & Good, M. (2015). Interleukin-22 signaling in the regulation of intestinal health and disease. Frontiers in Cell and Development Biology, 3, 85.Google Scholar
  131. Paul, W. E., & Zhu, J. (2010). How are T(H)2-type immune responses initiated and amplified? Nature Reviews Immunology, 10, 225–235.PubMedPubMedCentralCrossRefGoogle Scholar
  132. Perlmann, P., & Broberger, O. (1963). In vitro studies of ulcerative colitis. II. Cytotoxic action of white blood cells from patients on human fetal colon cells. The Journal of Experimental Medicine, 117, 717–733.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Pezoldt, J., & Huehn, J. (2016). Tissue-specific induction of CCR6 and Nrp1 during early CD4+ T cell differentiation. European Journal of Microbiology & Immunology, 6, 219–226.CrossRefGoogle Scholar
  134. Polansky, J. K., Kretschmer, K., Freyer, J., Floess, S., Garbe, A., Baron, U., Olek, S., Hamann, A., von Boehmer, H., & Huehn, J. (2008). DNA methylation controls Foxp3 gene expression. European Journal of Immunology, 38, 1654–1663.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Powrie, F., Leach, M. W., Mauze, S., Caddle, L. B., & Coffman, R. L. (1993). Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. International Immunology, 5, 1461–1471.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Powrie, F., Correa Oliveira, R., Mauze, S., & Coffman, R. L. (1994). Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. The Journal of Experimental Medicine, 179, 589–600.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Radtke, A. J., Kastenmuller, W., Espinosa, D. A., Gerner, M. Y., Tse, S. W., Sinnis, P., Germain, R. N., Zavala, F. P., & Cockburn, I. A. (2015). Lymph-node resident CD8a+ dendritic cells capture antigens from migratory malaria sporozoites and induce CD8+ T cell responses. PLoS Pathogens, 11, e1004637.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Raverdeau, M., & Mills, K. H. (2014). Modulation of T cell and innate immune responses by retinoic acid. Journal of Immunology, 192, 2953–2958.CrossRefGoogle Scholar
  139. Roozendaal, R., Mempel, T. R., Pitcher, L. A., Gonzalez, S. F., Verschoor, A., Mebius, R. E., von Andrian, U. H., & Carroll, M. C. (2009). Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity, 30, 264–276.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Rothenberg, E. V., Moore, J. E., & Yui, M. A. (2008). Launching the T-cell-lineage developmental programme. Nature Reviews Immunology, 8, 9–21.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9, 313–323.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Rovedatti, L., Kudo, T., Biancheri, P., Sarra, M., Knowles, C. H., Rampton, D. S., Corazza, G. R., Monteleone, G., Di Sabatino, A., & Macdonald, T. T. (2009). Differential regulation of interleukin 17 and interferon-γ production in inflammatory bowel disease. Gut, 58, 1629–1636.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Roy, U., Galvez, E. J. C., Iljazovic, A., Lesker, T. R., Blazejewski, A. J., Pils, M. C., Heise, U., Huber, S., Flavell, R. A., & Strowig, T. (2017). Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells. Cell Reports, 21, 994–1008.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133, 775–787.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Schaper, K., Kietzmann, M., & Baumer, W. (2014). Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. Molecular Immunology, 59, 10–18.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Schiering, C., Krausgruber, T., Chomka, A., Frohlich, A., Adelmann, K., Wohlfert, E. A., Pott, J., Griseri, T., Bollrath, J., Hegazy, A. N., et al. (2014). The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature, 513, 564–568.PubMedPubMedCentralCrossRefGoogle Scholar
  147. Schulz, O., Jaensson, E., Persson, E. K., Liu, X., Worbs, T., Agace, W. W., & Pabst, O. (2009). Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. The Journal of Experimental Medicine, 206, 3101–3114.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Scott, C. L., Aumeunier, A. M., & Mowat, A. M. (2011). Intestinal CD103+ dendritic cells: Master regulators of tolerance? Trends in Immunology, 32, 412–419.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Sefik, E., Geva-Zatorsky, N., Oh, S., Konnikova, L., Zemmour, D., McGuire, A. M., Burzyn, D., Ortiz-Lopez, A., Lobera, M., Yang, J., et al. (2015). Mucosal immunology. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science, 349, 993–997.PubMedPubMedCentralCrossRefGoogle Scholar
  150. Shan, M., Gentile, M., Yeiser, J. R., Walland, A. C., Bornstein, V. U., Chen, K., He, B., Cassis, L., Bigas, A., Cols, M., et al. (2013). Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science, 342, 447–453.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Shevach, E. M. (2009). Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity, 30, 636–645.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Shih, D. Q., Targan, S. R., & McGovern, D. (2008). Recent advances in IBD pathogenesis: Genetics and immunobiology. Current Gastroenterology Reports, 10, 8.CrossRefGoogle Scholar
  153. Shorter, R. G., Huizenga, K. A., ReMine, S. G., & Spencer, R. J. (1970). Effects of preliminary incubation of lymphocytes with serum on their cytotoxicity for colonic epithelial cells. Gastroenterology, 58, 843–850.PubMedPubMedCentralGoogle Scholar
  154. Siegert, S., Huang, H. Y., Yang, C. Y., Scarpellino, L., Carrie, L., Essex, S., Nelson, P. J., Heikenwalder, M., Acha-Orbea, H., Buckley, C. D., et al. (2011). Fibroblastic reticular cells from lymph nodes attenuate T cell expansion by producing nitric oxide. PLoS One, 6, e27618.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Siewert, C., Menning, A., Dudda, J., Siegmund, K., Lauer, U., Floess, S., Campbell, D. J., Hamann, A., & Huehn, J. (2007). Induction of organ-selective CD4+ regulatory T cell homing. European Journal of Immunology, 37, 978–989.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., Thangaraju, M., Prasad, P. D., Manicassamy, S., Munn, D. H., et al. (2014). Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 40, 128–139.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Sixt, M., Kanazawa, N., Selg, M., Samson, T., Roos, G., Reinhardt, D. P., Pabst, R., Lutz, M. B., & Sorokin, L. (2005). The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity, 22, 19–29.PubMedPubMedCentralCrossRefGoogle Scholar
  158. Smigiel, K. S., Srivastava, S., Stolley, J. M., & Campbell, D. J. (2014). Regulatory T-cell homeostasis: Steady-state maintenance and modulation during inflammation. Immunological Reviews, 259, 40–59.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly, Y. M., Glickman, J. N., & Garrett, W. S. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341, 569–573.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Smyth, L. A., Ratnasothy, K., Tsang, J. Y., Boardman, D., Warley, A., Lechler, R., & Lombardi, G. (2013). CD73 expression on extracellular vesicles derived from CD4+CD25+Foxp3+ T cells contributes to their regulatory function. European Journal of Immunology, 43, 2430–2440.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Solomon, B. D., & Hsieh, C. S. (2016). Antigen-specific development of mucosal Foxp3+RORγt+ T cells from regulatory T cell precursors. Journal of Immunology, 197, 3512–3519.CrossRefGoogle Scholar
  162. Spadoni, I., Iliev, I. D., Rossi, G., & Rescigno, M. (2012). Dendritic cells produce TSLP that limits the differentiation of Th17 cells, fosters Treg development, and protects against colitis. Mucosal Immunology, 5, 184–193.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Sternberg, E. M. (2006). Neural regulation of innate immunity: A coordinated nonspecific host response to pathogens. Nature Reviews Immunology, 6, 318–328.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Sugihara, T., Kobori, A., Imaeda, H., Tsujikawa, T., Amagase, K., Takeuchi, K., Fujiyama, Y., & Andoh, A. (2010). The increased mucosal mRNA expressions of complement C3 and interleukin-17 in inflammatory bowel disease. Clinical and Experimental Immunology, 160, 386–393.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Sun, C. M., Hall, J. A., Blank, R. B., Bouladoux, N., Oukka, M., Mora, J. R., & Belkaid, Y. (2007). Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. The Journal of Experimental Medicine, 204, 1775–1785.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G., & Glimcher, L. H. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell, 100, 655–669.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Tartar, D. M., VanMorlan, A. M., Wan, X., Guloglu, F. B., Jain, R., Haymaker, C. L., Ellis, J. S., Hoeman, C. M., Cascio, J. A., Dhakal, M., et al. (2010). FoxP3+RORγt+ T helper intermediates display suppressive function against autoimmune diabetes. Journal of Immunology, 184, 3377–3385.CrossRefGoogle Scholar
  168. Toker, A., Engelbert, D., Garg, G., Polansky, J. K., Floess, S., Miyao, T., Baron, U., Duber, S., Geffers, R., Giehr, P., et al. (2013). Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. Journal of Immunology, 190, 3180–3188.CrossRefGoogle Scholar
  169. Tone, Y., Furuuchi, K., Kojima, Y., Tykocinski, M. L., Greene, M. I., & Tone, M. (2008). Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nature Immunology, 9, 194–202.PubMedPubMedCentralCrossRefGoogle Scholar
  170. Torow, N., Yu, K., Hassani, K., Freitag, J., Schulz, O., Basic, M., Brennecke, A., Sparwasser, T., Wagner, N., Bleich, A., et al. (2015). Active suppression of intestinal CD4+TCRab+ T-lymphocyte maturation during the postnatal period. Nature Communications, 6, 7725.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K., & Spits, H. (2009). Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nature Immunology, 10, 864–871.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Trinchieri, G. (1994). Interleukin-12: A cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood, 84, 20.Google Scholar
  173. Vantourout, P., & Hayday, A. (2013). Six-of-the-best: Unique contributions of gdT cells to immunology. Nature Reviews Immunology, 13, 88–100.PubMedPubMedCentralCrossRefGoogle Scholar
  174. Vignali, D. A., Collison, L. W., & Workman, C. J. (2008). How regulatory T cells work. Nature Reviews Immunology, 8, 523–532.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Weber, B., Saurer, L., Schenk, M., Dickgreber, N., & Mueller, C. (2011). CX3CR1 defines functionally distinct intestinal mononuclear phagocyte subsets which maintain their respective functions during homeostatic and inflammatory conditions. European Journal of Immunology, 41, 773–779.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Weinreich, M. A., & Hogquist, K. A. (2008). Thymic emigration: When and how T cells leave home. Journal of Immunology, 181, 2265–2270.CrossRefGoogle Scholar
  177. Winau, F., Quack, C., Darmoise, A., & Kaufmann, S. H. (2008). Starring stellate cells in liver immunology. Current Opinion in Immunology, 20, 68–74.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wohlfert, E. A., Grainger, J. R., Bouladoux, N., Konkel, J. E., Oldenhove, G., Ribeiro, C. H., Hall, J. A., Yagi, R., Naik, S., Bhairavabhotla, R., et al. (2011). GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. The Journal of Clinical Investigation, 121, 4503–4515.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Wolvers, D. A., Coenen-de Roo, C. J., Mebius, R. E., van der Cammen, M. J., Tirion, F., Miltenburg, A. M., & Kraal, G. (1999). Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: Studies with OVA and human cartilage gp-39. Journal of Immunology, 162, 1994–1998.Google Scholar
  180. Worbs, T., Bode, U., Yan, S., Hoffmann, M. W., Hintzen, G., Bernhardt, G., Forster, R., & Pabst, O. (2006). Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. The Journal of Experimental Medicine, 203, 519–527.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Yang, B. H., Hagemann, S., Mamareli, P., Lauer, U., Hoffmann, U., Beckstette, M., Fohse, L., Prinz, I., Pezoldt, J., Suerbaum, S., et al. (2016). Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunology, 9, 444–457.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Ye, P., Rodriguez, F. H., Kanaly, S., Stocking, K. L., Schurr, J., Schwarzenberger, P., Oliver, P., Huang, W., Zhang, P., Zhang, J., et al. (2001). Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. The Journal of Experimental Medicine, 194, 519–527.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Zechner, E. L. (2017). Inflammatory disease caused by intestinal pathobionts. Current Opinion in Microbiology, 35, 64–69.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zhang, Z., Zhang, W., Guo, J., Gu, Q., Zhu, X., & Zhou, X. (2017). Activation and functional specialization of regulatory T cells lead to the generation of Foxp3 instability. Journal of Immunology, 198, 2612–2625.CrossRefGoogle Scholar
  185. Zheng, W., & Flavell, R. A. (1997). The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell, 89, 587–596.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Zheng, S. G., Wang, J. H., Stohl, W., Kim, K. S., Gray, J. D., & Horwitz, D. A. (2006). TGF-beta requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. Journal of Immunology, 176, 3321–3329.CrossRefGoogle Scholar
  187. Zheng, Y., Josefowicz, S., Chaudhry, A., Peng, X. P., Forbush, K., & Rudensky, A. Y. (2010). Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature, 463, 808–812.PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zigmond, E., Varol, C., Farache, J., Elmaliah, E., Satpathy, A. T., Friedlander, G., Mack, M., Shpigel, N., Boneca, I. G., Murphy, K. M., et al. (2012). Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity, 37, 1076–1090.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joern Pezoldt
    • 1
  • Juhao Yang
    • 1
  • Mangge Zou
    • 1
  • Jochen Huehn
    • 1
  1. 1.Department Experimental ImmunologyHelmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations