Advertisement

Microbiome and Gut Immunity: The Epithelium

  • Claudia Günther
Chapter

Abstract

The intestinal epithelium not only plays a fundamental role in negotiating a homeostatic host-microbial relation but also represents the first line of defense against pathogenic microbes and microbial agents. As a consequence intestinal epithelial cells have developed a variety of mechanisms to respond to commensal and non-commensal microbes. Accordingly intestinal epithelial cells can physically restrict the translocation of potentially harmful microorganisms from the intestinal tract into the surrounding tissue by providing a physical barrier but also release antimicrobial peptides and mucus that control microbial composition and location. Despite its barrier function, the intestinal epithelium has an important function in translating luminal signals from the barrier surface to the underlying mucosal immune system. Defects in one of these functions can have tremendous effects on intestinal homeostasis and have been identified as key factors in the pathogenesis of intestinal inflammation. In this chapter we will discuss the role of the intestinal epithelium during host-microbe interactions.

References

  1. Adolph, T. E., Tomczak, M. F., Niederreiter, L., Ko, H. J., Bock, J., Martinez-Naves, E., Glickman, J. N., Tschurtschenthaler, M., Hartwig, J., Hosomi, S., et al. (2013). Paneth cells as a site of origin for intestinal inflammation. Nature, 503, 272–276.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alves-Filho, J. C., Sonego, F., Souto, F. O., Freitas, A., Verri, W. A., Jr., Auxiliadora-Martins, M., Basile-Filho, A., McKenzie, A. N., Xu, D., Cunha, F. Q., & Liew, F. Y. (2010). Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nature Medicine, 16, 708–712.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Artis, D. (2008). Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Reviews Immunology, 8, 411–420.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ayabe, T., Ashida, T., Kohgo, Y., & Kono, T. (2004). The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends in Microbiology, 12, 394–398.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barker, N. (2014). Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration. Nature Reviews Molecular Cell Biology, 15, 19–33.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barker, N., van de Wetering, M., & Clevers, H. (2008). The intestinal stem cell. Genes & Development, 22, 1856–1864.CrossRefGoogle Scholar
  7. Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157, 121–141.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bevins, C. L., & Salzman, N. H. (2011). Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews Microbiology, 9, 356–368.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Biswas, A., Liu, Y. J., Hao, L., Mizoguchi, A., Salzman, N. H., Bevins, C. L., & Kobayashi, K. S. (2010). Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proceedings of the National Academy of Sciences of the United States of America, 107, 14739–14744.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bjerknes, M., & Cheng, H. (1981). The stem-cell zone of the small intestinal epithelium. IV. Effects of resecting 30% of the small intestine. The American Journal of Anatomy, 160, 93–103.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bjerknes, M., & Cheng, H. (2005). Gastrointestinal stem cells. II. Intestinal stem cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 289, G381–G387.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blazejewski, A. J., Thiemann, S., Schenk, A., Pils, M. C., Galvez, E. J. C., Roy, U., Heise, U., de Zoete, M. R., Flavell, R. A., & Strowig, T. (2017). Microbiota normalization reveals that canonical caspase-1 activation exacerbates chemically induced intestinal inflammation. Cell Reports, 19, 2319–2330.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buffa, R., Capella, C., Fontana, P., Usellini, L., & Solcia, E. (1978). Types of endocrine cells in the human colon and rectum. Cell and Tissue Research, 192, 227–240.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buffie, C. G., & Pamer, E. G. (2013). Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology, 13, 790–801.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bullen, T. F., Forrest, S., Campbell, F., Dodson, A. R., Hershman, M. J., Pritchard, D. M., Turner, J. R., Montrose, M. H., & Watson, A. J. (2006). Characterization of epithelial cell shedding from human small intestine. Laboratory Investigation, 86, 1052–1063.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cadwell, K., Liu, J. Y., Brown, S. L., Miyoshi, H., Loh, J., Lennerz, J. K., Kishi, C., Kc, W., Carrero, J. A., Hunt, S., et al. (2008). A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature, 456, 259–263.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cadwell, K., Patel, K. K., Maloney, N. S., Liu, T. C., Ng, A. C., Storer, C. E., Head, R. D., Xavier, R., Stappenbeck, T. S., & Virgin, H. W. (2010). Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell, 141, 1135–1145.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Campbell, N., Yio, X. Y., So, L. P., Li, Y., & Mayer, L. (1999). The intestinal epithelial cell: Processing and presentation of antigen to the mucosal immune system. Immunological Reviews, 172, 315–324.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Corr, S. C., Gahan, C. C., & Hill, C. (2008). M-cells: Origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunology and Medical Microbiology, 52, 2–12.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Crosnier, C., Stamataki, D., & Lewis, J. (2006). Organizing cell renewal in the intestine: Stem cells, signals and combinatorial control. Nature Reviews Genetics, 7, 349–359.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cuthbert, A. P., Fisher, S. A., Mirza, M. M., King, K., Hampe, J., Croucher, P. J., Mascheretti, S., Sanderson, J., Forbes, A., Mansfield, J., et al. (2002). The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology, 122, 867–874.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dahan, S., Roth-Walter, F., Arnaboldi, P., Agarwal, S., & Mayer, L. (2007). Epithelia: Lymphocyte interactions in the gut. Immunological Reviews, 215, 243–253.PubMedPubMedCentralCrossRefGoogle Scholar
  23. de Santa Barbara, P., van den Brink, G. R., & Roberts, D. J. (2003). Development and differentiation of the intestinal epithelium. Cellular and Molecular Life Sciences, 60, 1322–1332.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Donaldson, G. P., Lee, S. M., & Mazmanian, S. K. (2016). Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology, 14, 20–32.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Eisenhoffer, G. T., Loftus, P. D., Yoshigi, M., Otsuna, H., Chien, C. B., Morcos, P. A., & Rosenblatt, J. (2012). Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature, 484, 546–549.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Elphick, D. A., & Mahida, Y. R. (2005). Paneth cells: Their role in innate immunity and inflammatory disease. Gut, 54, 1802–1809.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Farin, H. F., Karthaus, W. R., Kujala, P., Rakhshandehroo, M., Schwank, G., Vries, R. G., Kalkhoven, E., Nieuwenhuis, E. E., & Clevers, H. (2014). Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell-derived IFN-gamma. The Journal of Experimental Medicine, 211, 1393–1405.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Furness, J. B., Rivera, L. R., Cho, H. J., Bravo, D. M., & Callaghan, B. (2013). The gut as a sensory organ. Nature Reviews Gastroenterology & Hepatology, 10, 729–740.CrossRefGoogle Scholar
  29. Gallo, R. L., & Hooper, L. V. (2012). Epithelial antimicrobial defence of the skin and intestine. Nature Reviews Immunology, 12, 503–516.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gerbe, F., & Jay, P. (2016). Intestinal tuft cells: Epithelial sentinels linking luminal cues to the immune system. Mucosal Immunology, 9, 1353–1359.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gerbe, F., Legraverend, C., & Jay, P. (2012). The intestinal epithelium tuft cells: Specification and function. Cellular and Molecular Life Sciences, 69, 2907–2917.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gerbe, F., Sidot, E., Smyth, D. J., Ohmoto, M., Matsumoto, I., Dardalhon, V., Cesses, P., Garnier, L., Pouzolles, M., Brulin, B., et al. (2016). Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature, 529, 226–230.CrossRefPubMedGoogle Scholar
  33. Gibbons, D. L., & Spencer, J. (2011). Mouse and human intestinal immunity: Same ballpark, different players; different rules, same score. Mucosal Immunology, 4, 148–157.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Girardin, S. E., Boneca, I. G., Viala, J., Chamaillard, M., Labigne, A., Thomas, G., Philpott, D. J., & Sansonetti, P. J. (2003a). Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. The Journal of Biological Chemistry, 278, 8869–8872.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Girardin, S. E., Travassos, L. H., Herve, M., Blanot, D., Boneca, I. G., Philpott, D. J., Sansonetti, P. J., & Mengin-Lecreulx, D. (2003b). Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. The Journal of Biological Chemistry, 278, 41702–41708.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Grencis, R. K., & Worthington, J. J. (2016). Tuft cells: A new flavor in innate epithelial immunity. Trends in Parasitology, 32, 583–585.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gronke, K., & Diefenbach, A. (2016). Tuft cell-derived IL-25 activates and maintains ILC2. Immunology and Cell Biology, 94, 221–223.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gunawardene, A. R., Corfe, B. M., & Staton, C. A. (2011). Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. International Journal of Experimental Pathology, 92, 219–231.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gunther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M. J., Hedrick, S. M., Tenzer, S., Neurath, M. F., & Becker, C. (2011). Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature, 477, 335–339.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gunther, C., Neumann, H., Neurath, M. F., & Becker, C. (2013). Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium. Gut, 62, 1062–1071.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gunther, C., Josenhans, C., & Wehkamp, J. (2016). Crosstalk between microbiota, pathogens and the innate immune responses. International Journal of Medical Microbiology, 306, 257–265.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hall, C. A. (1997). Patient management in head injury care: A nursing perspective. Intensive & Critical Care Nursing, 13, 329–337.CrossRefGoogle Scholar
  43. Hasegawa, M., Yada, S., Liu, M. Z., Kamada, N., Munoz-Planillo, R., Do, N., Nunez, G., & Inohara, N. (2014). Interleukin-22 regulates the complement system to promote resistance against pathobionts after pathogen-induced intestinal damage. Immunity, 41, 620–632.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Heath, J. P. (1996). Epithelial cell migration in the intestine. Cell Biology International, 20, 139–146.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hershberg, R. M., Framson, P. E., Cho, D. H., Lee, L. Y., Kovats, S., Beitz, J., Blum, J. S., & Nepom, G. T. (1997). Intestinal epithelial cells use two distinct pathways for HLA class II antigen processing. The Journal of Clinical Investigation, 100, 204–215.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hugot, J. P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J. P., Belaiche, J., Almer, S., Tysk, C., O'Morain, C. A., Gassull, M., et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature, 411, 599–603.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Inohara, N., Ogura, Y., Fontalba, A., Gutierrez, O., Pons, F., Crespo, J., Fukase, K., Inamura, S., Kusumoto, S., Hashimoto, M., et al. (2003). Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. Journal of Biological Chemistry, 278, 5509–5512.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ireland, H., Houghton, C., Howard, L., & Winton, D. J. (2005). Cellular inheritance of a cre-activated reporter gene to determine Paneth cell longevity in the murine small intestine. Developmental Dynamics, 233, 1332–1336.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Johansson, M. E., Sjovall, H., & Hansson, G. C. (2013). The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology & Hepatology, 10, 352–361.CrossRefGoogle Scholar
  50. Jung, C., Hugot, J. P., & Barreau, F. (2010). Peyer’s patches: The immune sensors of the intestine. International Journal of Inflammation, 2010, 823710.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kamada, N., Chen, G. Y., Inohara, N., & Nunez, G. (2013). Control of pathogens and pathobionts by the gut microbiota. Nature Immunology, 14, 685–690.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kambayashi, T., & Laufer, T. M. (2014). Atypical MHC class II-expressing antigen-presenting cells: Can anything replace a dendritic cell? Nature Reviews Immunology, 14, 719–730.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kaser, A., & Blumberg, R. S. (2008). Paneth cells and inflammation dance together in Crohn’s disease. Cell Research, 18, 1160–1162.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kaser, A., Lee, A. H., Franke, A., Glickman, J. N., Zeissig, S., Tilg, H., Nieuwenhuis, E. E., Higgins, D. E., Schreiber, S., Glimcher, L. H., & Blumberg, R. S. (2008). XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell, 134, 743–756.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kim, Y. S., & Ho, S. B. (2010). Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Current Gastroenterology Reports, 12, 319–330.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kobayashi, K. S., Chamaillard, M., Ogura, Y., Henegariu, O., Inohara, N., Nunez, G., & Flavell, R. A. (2005). Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science, 307, 731–734.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kokrashvili, Z., Rodriguez, D., Yevshayeva, V., Zhou, H., Margolskee, R. F., & Mosinger, B. (2009). Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5. Gastroenterology, 137, 598–606, 606 e591–592.Google Scholar
  58. Kvietys, P. R., & Granger, D. N. (2010). Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Annals of the New York Academy of Sciences, 1207(Suppl 1), E29–E43.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lamblin, G., Aubert, J. P., Perini, J. M., Klein, A., Porchet, N., Degand, P., & Roussel, P. (1992). Human respiratory mucins. The European Respiratory Journal, 5, 247–256.PubMedPubMedCentralGoogle Scholar
  60. Lassen, K. G., Kuballa, P., Conway, K. L., Patel, K. K., Becker, C. E., Peloquin, J. M., Villablanca, E. J., Norman, J. M., Liu, T. C., Heath, R. J., et al. (2014). Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proceedings of the National Academy of Sciences of the United States of America, 111, 7741–7746.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R., & Mahajan, A. (2013). Microfold (M) cells: Important immunosurveillance posts in the intestinal epithelium. Mucosal Immunology, 6, 666–677.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Madara, J. L. (1982). Cup cells: Structure and distribution of a unique class of epithelial cells in guinea pig, rabbit, and monkey small intestine. Gastroenterology, 83, 981–994.PubMedPubMedCentralGoogle Scholar
  63. Mahapatro, M., Foersch, S., Hefele, M., He, G. W., Giner-Ventura, E., McHedlidze, T., Kindermann, M., Vetrano, S., Danese, S., Gunther, C., et al. (2016). Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Reports, 15, 1743–1756.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Man, A. L., Prieto-Garcia, M. E., & Nicoletti, C. (2004). Improving M cell mediated transport across mucosal barriers: Do certain bacteria hold the keys? Immunology, 113, 15–22.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Marchiando, A. M., Shen, L., Graham, W. V., Edelblum, K. L., Duckworth, C. A., Guan, Y., Montrose, M. H., Turner, J. R., & Watson, A. J. (2011). The epithelial barrier is maintained by in vivo tight junction expansion during pathologic intestinal epithelial shedding. Gastroenterology 140, 1208–1218 e1201–1202.Google Scholar
  66. Marshman, E., Booth, C., & Potten, C. S. (2002). The intestinal epithelial stem cell. BioEssays, 24, 91–98.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Miller, H., Zhang, J., Kuolee, R., Patel, G. B., & Chen, W. (2007). Intestinal M cells: The fallible sentinels? World Journal of Gastroenterology, 13, 1477–1486.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mowat, A. M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nature Reviews Immunology, 3, 331–341.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Munoz, M., Eidenschenk, C., Ota, N., Wong, K., Lohmann, U., Kuhl, A. A., Wang, X., Manzanillo, P., Li, Y., Rutz, S., et al. (2015). Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity, 42, 321–331.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Noah, T. K., Donahue, B., & Shroyer, N. F. (2011). Intestinal development and differentiation. Experimental Cell Research, 317, 2702–2710.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Oboki, K., Ohno, T., Kajiwara, N., Saito, H., & Nakae, S. (2010). IL-33 and IL-33 receptors in host defense and diseases. Allergology International, 59, 143–160.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ogura, Y., Bonen, D. K., Inohara, N., Nicolae, D. L., Chen, F. F., Ramos, R., Britton, H., Moran, T., Karaliuskas, R., Duerr, R. H., et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 411, 603–606.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ogura, Y., Lala, S., Xin, W., Smith, E., Dowds, T. A., Chen, F. F., Zimmermann, E., Tretiakova, M., Cho, J. H., Hart, J., et al. (2003). Expression of NOD2 in Paneth cells: A possible link to Crohn’s ileitis. Gut, 52, 1591–1597.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Okumura, R., & Takeda, K. (2017). Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Experimental & Molecular Medicine, 49, e338.CrossRefGoogle Scholar
  75. Ouellette, A. J. (2010). Paneth cells and innate mucosal immunity. Current Opinion in Gastroenterology, 26, 547–553.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pelaseyed, T., Bergstrom, J. H., Gustafsson, J. K., Ermund, A., Birchenough, G. M., Schutte, A., van der Post, S., Svensson, F., Rodriguez-Pineiro, A. M., Nystrom, E. E., et al. (2014). The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews, 260, 8–20.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 14, 141–153.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pickert, G., Neufert, C., Leppkes, M., Zheng, Y., Wittkopf, N., Warntjen, M., Lehr, H. A., Hirth, S., Weigmann, B., Wirtz, S., et al. (2009). STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. The Journal of Experimental Medicine, 206, 1465–1472.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Porter, E. M., Bevins, C. L., Ghosh, D., & Ganz, T. (2002). The multifaceted Paneth cell. Cellular and Molecular Life Sciences, 59, 156–170.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Raetz, M., Hwang, S. H., Wilhelm, C. L., Kirkland, D., Benson, A., Sturge, C. R., Mirpuri, J., Vaishnava, S., Hou, B., Defranco, A. L., et al. (2013). Parasite-induced TH1 cells and intestinal dysbiosis cooperate in IFN-gamma-dependent elimination of Paneth cells. Nature Immunology, 14, 136–142.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ramanan, D., & Cadwell, K. (2016). Intrinsic defense mechanisms of the intestinal epithelium. Cell Host & Microbe, 19, 434–441.CrossRefGoogle Scholar
  82. Ramirez, C., & Gebert, A. (2003). Vimentin-positive cells in the epithelium of rabbit ileal villi represent cup cells but not M-cells. The Journal of Histochemistry and Cytochemistry, 51, 1533–1544.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Rauch, I., Deets, K. A., Ji, D. X., von Moltke, J., Tenthorey, J. L., Lee, A. Y., Philip, N. H., Ayres, J. S., Brodsky, I. E., Gronert, K., & Vance, R. E. (2017). NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity, 46, 649–659.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rostan, O., Arshad, M. I., Piquet-Pellorce, C., Robert-Gangneux, F., Gangneux, J. P., & Samson, M. (2015). Crucial and diverse role of the interleukin-33/ST2 axis in infectious diseases. Infection and Immunity, 83, 1738–1748.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Salzman, N. H. (2010). Paneth cell defensins and the regulation of the microbiome: Detente at mucosal surfaces. Gut Microbes, 1, 401–406.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sancho, E., Batlle, E., & Clevers, H. (2003). Live and let die in the intestinal epithelium. Current Opinion in Cell Biology, 15, 763–770.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sato, T., van Es, J. H., Snippert, H. J., Stange, D. E., Vries, R. G., van den Born, M., Barker, N., Shroyer, N. F., van de Wetering, M., & Clevers, H. (2011). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469, 415–418.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sellin, M. E., Maslowski, K. M., Maloy, K. J., & Hardt, W. D. (2015). Inflammasomes of the intestinal epithelium. Trends in Immunology, 36, 442–450.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Shao, L., Kamalu, O., & Mayer, L. (2005). Non-classical MHC class I molecules on intestinal epithelial cells: Mediators of mucosal crosstalk. Immunological Reviews, 206, 160–176.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Snoeck, V., Goddeeris, B., & Cox, E. (2005). The role of enterocytes in the intestinal barrier function and antigen uptake. Microbes and Infection, 7, 997–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Songhet, P., Barthel, M., Stecher, B., Muller, A. J., Kremer, M., Hansson, G. C., & Hardt, W. D. (2011). Stromal IFN-gammaR-signaling modulates goblet cell function during Salmonella Typhimurium infection. PLoS One, 6, e22459.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sorbara, M. T., & Philpott, D. J. (2011). Peptidoglycan: A critical activator of the mammalian immune system during infection and homeostasis. Immunological Reviews, 243, 40–60.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Specian, R. D., & Oliver, M. G. (1991). Functional biology of intestinal goblet cells. The American Journal of Physiology, 260, C183–C193.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sternini, C., Anselmi, L., & Rozengurt, E. (2008). Enteroendocrine cells: A site of ‘taste’ in gastrointestinal chemosensing. Current Opinion in Endocrinology, Diabetes, and Obesity, 15, 73–78.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Strowig, T., Henao-Mejia, J., Elinav, E., & Flavell, R. (2012). Inflammasomes in health and disease. Nature, 481, 278–286.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Thiemann, S., Smit, N., Roy, U., Lesker, T. R., Galvez, E. J. C., Helmecke, J., Basic, M., Bleich, A., Goodman, A. L., Kalinke, U., et al. (2017). Enhancement of IFNgamma production by distinct commensals ameliorates salmonella-induced disease. Cell Host & Microbe, 21, 682–694 e685.Google Scholar
  97. Travassos, L. H., Carneiro, L. A., Ramjeet, M., Hussey, S., Kim, Y. G., Magalhaes, J. G., Yuan, L., Soares, F., Chea, E., Le Bourhis, L., et al. (2010). Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nature Immunology, 11, 55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  98. van der Flier, L. G., & Clevers, H. (2009). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annual Review of Physiology, 71, 241–260.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Van der Sluis, M., De Koning, B. A., De Bruijn, A. C., Velcich, A., Meijerink, J. P., Van Goudoever, J. B., Buller, H. A., Dekker, J., Van Seuningen, I., Renes, I. B., & Einerhand, A. W. (2006). Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology, 131, 117–129.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Velcich, A., Yang, W., Heyer, J., Fragale, A., Nicholas, C., Viani, S., Kucherlapati, R., Lipkin, M., Yang, K., & Augenlicht, L. (2002). Colorectal cancer in mice genetically deficient in the mucin Muc2. Science, 295, 1726–1729.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Vitale, S., Picascia, S., & Gianfrani, C. (2016). The cross-talk between enterocytes and intraepithelial lymphocytes. Molecular and Cellular Pediatrics, 3, 20.PubMedPubMedCentralCrossRefGoogle Scholar
  102. von Moltke, J., Ji, M., Liang, H. E., & Locksley, R. M. (2016). Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature, 529, 221–225.CrossRefGoogle Scholar
  103. Wehkamp, J., & Stange, E. F. (2006). Paneth cells and the innate immune response. Current Opinion in Gastroenterology, 22, 644–650.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wehkamp, J., & Stange, E. F. (2010). Paneth’s disease. Journal of Crohn’s & Colitis, 4, 523–531.CrossRefGoogle Scholar
  105. Wehkamp, J., Wang, G., Kubler, I., Nuding, S., Gregorieff, A., Schnabel, A., Kays, R. J., Fellermann, K., Burk, O., Schwab, M., et al. (2007). The Paneth cell alpha-defensin deficiency of ileal Crohn’s disease is linked to Wnt/Tcf-4. Journal of Immunology, 179, 3109–3118.CrossRefGoogle Scholar
  106. Wilson, C. L., Schmidt, A. P., Pirila, E., Valore, E. V., Ferri, N., Sorsa, T., Ganz, T., & Parks, W. C. (2009). Differential processing of {alpha}- and {beta}-defensin precursors by matrix metalloproteinase-7 (MMP-7). The Journal of Biological Chemistry, 284, 8301–8311.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Wittkopf, N., Neurath, M. F., & Becker, C. (2014). Immune-epithelial crosstalk at the intestinal surface. Journal of Gastroenterology, 49, 375–387.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wittkopf, N., Pickert, G., Billmeier, U., Mahapatro, M., Wirtz, S., Martini, E., Leppkes, M., Neurath, M. F., & Becker, C. (2015). Activation of intestinal epithelial Stat3 orchestrates tissue defense during gastrointestinal infection. PLoS One, 10, e0118401.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zheng, Y., Valdez, P. A., Danilenko, D. M., Hu, Y., Sa, S. M., Gong, Q., Abbas, A. R., Modrusan, Z., Ghilardi, N., de Sauvage, F. J., & Ouyang, W. (2008). Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Medicine, 14, 282–289.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ziv, E., & Bendayan, M. (2000). Intestinal absorption of peptides through the enterocytes. Microscopy Research and Technique, 49, 346–352.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kussmaul Campus für Medizinische Forschung, Universitätsklinikum Erlangen – Medizinische Klinik IErlangenGermany

Personalised recommendations