Advertisement

Clinical Implementation of High-Throughput Sequencing

  • Andreas Hiergeist
  • André Gessner
Chapter

Abstract

Rapid advances in high-throughput sequencing-based technologies and computational tools have opened up entirely new strategies for extensively characterizing the microbial ecology of human body habitats, independent of laboratory cultivation. Several large-scale seminal studies have revealed that various human diseases are closely associated with compositional changes in the intestinal microbiota. However, the causal connection between these microbial imbalances and clinical symptomology and the underlying pathophysiological mechanisms of microbial-host interactions are still essentially unknown for many pathologies. The transfer of findings from basic biomedical research into clinical application is one of the major challenges in microbiome research and is impeded by large interindividual variations and the lack of knowledge about potential confounding factors such as diet or host and environmental influences. Clinical application of microbiome analyses requires a diligent implementation of quality-controlled standardized wet lab and bioinformatic protocols, as well as continuous quality monitoring and accreditation in addition to well-controlled cohort studies. Furthermore, additional tools for the functional analysis of microbiome signatures are needed. Only if these conditions are met can high-throughput sequencing-based quantitative metagenomics be successfully applied as a prognostic tool in clinical practice or for improving the development of individualized therapies based on microbiota profiles.

References

  1. Bahl, M. I., Laursen, M. F., & Dalgaard, M. D. (2017). Genomic GC-content affects the accuracy of 16S rRNA gene sequencing based microbial profiling due to PCR bias. Frontiers in Microbiology, 8, 1–8.Google Scholar
  2. Barb, J. J., Oler, A. J., Kim, H. S., Chalmers, N., Wallen, G. R., Cashion, A., et al. (2016). Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples. PLoS One, 11, 1–18.CrossRefGoogle Scholar
  3. Benitez-Paez, A., Portune, K., & Sanz, Y. (2015). Species-level resolution of 16S rRNA gene amplicons sequenced through MinIONTM portable nanopore sequencer. Gigascience, 5, 4.CrossRefGoogle Scholar
  4. Burke, C. M., & Darling, A. E. (2016). A method for high precision sequencing of near full-length 16S rRNA genes on an Illumina MiSeq. PeerJ, 4, e2492.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME Journal, 11, 2639–2643.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Choo, J. M., Leong, L. E. X., & Rogers, G. B. (2015). Sample storage conditions significantly influence faecal microbiome profiles. Scientific Reports, 5, 16350.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Costea, P. I., Zeller, G., Sunagawa, S., Pelletier, E., Alberti, A., Levenez, F., et al. (2017). Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnology, 35, 1069–1076.Google Scholar
  8. Davido, B., Batista, R., Michelon, H., Lepainteur, M., Bouchand, F., Lepeule, R., et al. (2017). Is faecal microbiota transplantation an option to eradicate highly drug-resistant enteric bacteria carriage? The Journal of Hospital Infection, 95, 433–437.CrossRefPubMedGoogle Scholar
  9. Donaldson, G. P., Lee, S. M., & Mazmanian, S. K. (2015). Gut biogeography of the bacterial microbiota. Nature Reviews. Microbiology, 14, 20–32.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Duvallet, C., Gibbons, S. M., Gurry, T., Irizarry, R. A., & Alm, E. J. (2017). Meta-analysis of gut microbiome studies identifies diseasespecific and shared responses. Nature Communications, 8, 1784.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 528, 262–266.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fouhy, F., Clooney, A. G., Stanton, C., Claesson, M. J., & Cotter, P. D. (2016). 16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiology, 16, 123.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Franzosa, E. A., Morgan, X. C., Segata, N., Waldron, L., Reyes, J., Earl, A. M., et al. (2014). Relating the metatranscriptome and metagenome of the human gut. Proceedings of the National Academy of Sciences of the United States of America, 111, E2329–E2338.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gagan, J., & Van Allen, E. M. (2015). Next-generation sequencing to guide cancer therapy. Genome Medicine, 7, 80.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome datasets are compositional: And this is not optional. Frontiers in Microbiology, 8, 2224.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gohl, D. M., Vangay, P., Garbe, J., MacLean, A., Hauge, A., Becker, A., et al. (2016). Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nature Biotechnology, 34, 942–949.CrossRefPubMedGoogle Scholar
  17. Hiergeist, A., Gläsner, J., Reischl, U., & Gessner, A. (2015). Analyses of intestinal microbiota: Culture versus sequencing. ILAR Journal, 56, 228–240.CrossRefPubMedGoogle Scholar
  18. Hiergeist, A., Reischl, U., Priority Program 1656 Intestinal Microbiota Consortium/Quality Assessment Participants, & Gessner, A. (2016). Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. International Journal of Medical Microbiology, 306, 334–342.CrossRefGoogle Scholar
  19. Jones, M. B., Highlander, S. K., Anderson, E. L., Li, W., Dayrit, M., Klitgord, N., et al. (2015). Library preparation methodology can influence genomic and functional predictions in human microbiome research. Proceedings of the National Academy of Sciences of the United States of America, 112, 14024–14029.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kearney, S. M., Gibbons, S. M., Poyet, M., Gurry, T., Bullock, K., Allegretti, J., et al. (2017). Endospores and other lysisresistant bacteria comprise a widely shared core community within the human microbiota. BioRxiv, 221713.Google Scholar
  21. Kim, H. J., Huh, D., Hamilton, G., & Ingber, D. E. (2012). Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a Chip, 12, 2165.CrossRefPubMedGoogle Scholar
  22. Kim, D., Hofstaedter, C. E., Zhao, C., Mattei, L., Tanes, C., Clarke, E., et al. (2017). Optimizing methods and dodging pitfalls in microbiome research. Microbiome, 5, 52.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., et al. (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41, e1.CrossRefPubMedGoogle Scholar
  24. Koppel, N., Maini Rekdal, V., & Balskus, E. P. (2017). Chemical transformation of xenobiotics by the human gut microbiota. Science, 356, eaag2770.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lagier, J. C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, C., et al. (2012). Microbial culturomics: Paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, 18, 1185–1193.CrossRefPubMedGoogle Scholar
  26. Lagkouvardos, I., Joseph, D., Kapfhammer, M., Giritli, S., Horn, M., Haller, D., et al. (2016). IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Scientific Reports, 6, 33721.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Leclercq, S., Mian, F. M., Stanisz, A. M., Bindels, L. B., Cambier, E., Ben-Amram, H., et al. (2017). Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nature Communications, 8, 15062.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lee, S. T. M., Kahn, S. A., Delmont, T. O., Shaiber, A., Esen, ö. C., Hubert, N. A., et al. (2017). Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics. Microbiome, 5.Google Scholar
  29. Leinonen, R., Sugawara, H., & Shumway, M. (2011). The sequence read archive. Nucleic Acids Research, 39.Google Scholar
  30. Maurice, C. F., Haiser, H. J., & Turnbaugh, P. J. (2013). Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell, 152, 39–50.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Molly, K., Vande Woestyne, M., & Verstraete, W. (1993). Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology, 39, 254–258.CrossRefPubMedGoogle Scholar
  32. Neville, B. A., Forster, S. C., & Lawley, T. D. (2018). Commensal Koch’s postulates: Establishing causation in human microbiota research. Current Opinion in Microbiology, 42, 47–52.CrossRefPubMedGoogle Scholar
  33. Nguyen, T. L. A., Vieira-Silva, S., Liston, A., & Raes, J. (2015). How informative is the mouse for human gut microbiota research? Disease Models and Mechanisms, 8, 1–16.CrossRefPubMedGoogle Scholar
  34. Nielsen, H. B., Almeida, M., Juncker, A. S., Rasmussen, S., Li, J., Sunagawa, S., et al. (2014). Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 32, 822–828.CrossRefPubMedGoogle Scholar
  35. Raju, S., Ellonen, P., De Vos, W. M., Eriksson, J. G., Weiderpass, E., Rounge, T. B., et al. (2018). Reproducibility and repeatability of six high-throughput 16S rDNA sequencing protocols for microbiota profiling. J Microbiol Methods, 147, 76–86.CrossRefPubMedGoogle Scholar
  36. Santiago, A., Panda, S., Mengels, G., Martinez, X., Azpiroz, F., Dore, J., et al. (2014). Processing faecal samples: A step forward for standards in microbial community analysis. BMC Microbiology, 14, 112.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schirmer, M., Ijaz, U. Z., D’Amore, R., Hall, N., Sloan, W. T., & Quince, C. (2015). Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Research, 43, e37.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sinha, R., Abu-Ali, G., Vogtmann, E., Fodor, A.A., Ren, B., Amir, A., et al., Microbiome Quality Control Project Consortium. (2017). Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nature Biotechnology, 35, 1077–1086.Google Scholar
  39. Song, S. J., Amir, A., Metcalf, J. L., Amato, K. R., Xu, Z. Z., Humphrey, G., et al. (2016). Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems, 1, e00021-16.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stämmler, F., Gläsner, J., Hiergeist, A., Holler, E., Weber, D., Oefner, P. J., et al. (2016). Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome, 4, 28.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Surana, N. K., & Kasper, D. L. (2017). Moving beyond microbiome-wide associations to causal microbe identification. Nature, 552(7684), 244–247.PubMedPubMedCentralGoogle Scholar
  42. Taur, Y., & Pamer, E. G. (2014). Harnessing microbiota to kill a pathogen: Fixing the microbiota to treat Clostridium difficile infections. Nature Medicine, 20, 246–247.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thaiss, C. A., Levy, M., Korem, T., Dohnalová, L., Shapiro, H., Jaitin, D. A., et al. (2016). Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell, 167, 1495–1510.e12.CrossRefPubMedGoogle Scholar
  44. Velásquez-Mejía, E. P., de la Cuesta-Zuluaga, J., & Escobar, J. S. (2018). Impact of DNA extraction, sample dilution, and reagent contamination on 16S rRNA gene sequencing of human feces. Applied Microbiology and Biotechnology, 102, 403–411.CrossRefPubMedGoogle Scholar
  45. Wagner, J., Coupland, P., Browne, H. P., Lawley, T. D., Francis, S. C., & Parkhill, J. (2016). Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiology, 16, 1–17.CrossRefGoogle Scholar
  46. Walker, A. W., Martin, J. C., Scott, P., Parkhill, J., Flint, H. J., & Scott, K. P. (2015). 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome, 3, 26.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang, J., & Jia, H. (2016). Metagenome-wide association studies: Fine-mining the microbiome. Nature Reviews. Microbiology, 14, 508–522.CrossRefPubMedGoogle Scholar
  48. Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., et al. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5, 27.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wilson, M. R., Suan, D., Duggins, A., Schubert, R. D., Khan, L. M., Sample, H. A., et al. (2017). A novel cause of chronic viral meningoencephalitis: Cache Valley virus. Annals of Neurology, 82, 105–114.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yang, C., & Iwasaki, W. (2014). MetaMetaDB: A database and analytic system for investigating microbial habitability. PLoS One, 9, e87126.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Zoetendal, E. G., Von Wright, A., Vilpponen-Salmela, T., Ben-Amor, K., Akkermans, A. D. L., & De Vos, W. M. (2002). Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Applied and Environmental Microbiology, 68, 3401–3407.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Clinical Microbiology and Hygiene, University Hospital RegensburgRegensburgGermany

Personalised recommendations