Advertisement

Microbiome and Gut Immunity: B Cells

  • Oliver Pabst
Chapter

Abstract

The intestinal mucosa is protected by secretory immunoglobulins (SIgs). SIgs are produced by the combined function of plasma cells and stroma cells, primarily the gut epithelial cells, and constitute the main type of antibody produced in mice and humans. After their release into the gut lumen, SIgs regulate the composition of the microbiota, neutralize toxins, and prevent infections. In this chapter, the organization of the intestinal B cell compartment, pathways of SIg generation, and the function of SIg in regulating the intestinal microbiota will be discussed.

References

  1. Bemark, M., Boysen, P., & Lycke, N. Y. (2012). Induction of gut IgA production through T cell-dependent and T cell-independent pathways. Annals of the New York Academy of Sciences, 1247, 97–116.CrossRefPubMedGoogle Scholar
  2. Boullier, S., Tanguy, M., Kadaoui, K. A., Caubet, C., Sansonetti, P., Corthesy, B., & Phalipon, A. (2009). Secretory IgA-mediated neutralization of Shigella flexneri prevents intestinal tissue destruction by down-regulating inflammatory circuits. Journal of Immunology, 183, 5879–5885.CrossRefGoogle Scholar
  3. Brandtzaeg, P., & Prydz, H. (1984). Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature, 311, 71–73.CrossRefPubMedGoogle Scholar
  4. Bunker, J. J., Erickson, S. A., Flynn, T. M., Henry, C., Koval, J. C., Meisel, M., Jabri, B., Antonopoulos, D. A., Wilson, P. C., & Bendelac, A. (2017). Natural polyreactive IgA antibodies coat the intestinal microbiota. Science, 358.  https://doi.org/10.1126/science.aan6619.
  5. Bunker, J. J., Flynn, T. M., Koval, J. C., Shaw, D. G., Meisel, M., McDonald, B. D., Ishizuka, I. E., Dent, A. L., Wilson, P. C., Jabri, B., et al. (2015). Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity, 43, 541–553.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Deng, S., Kain, L., Pereira, C. S., Mata, S., Macedo, M. F., Bendelac, A., Teyton, L., & Savage, P. B. (2017). Psychosine variants as antigens for natural killer T cells. Chemical Science, 8, 2204–2208.CrossRefPubMedGoogle Scholar
  7. Fransen, F., Zagato, E., Mazzini, E., Fosso, B., Manzari, C., El Aidy, S., Chiavelli, A., D’Erchia, A. M., Sethi, M. K., Pabst, O., et al. (2015). BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity, 43, 527–540.CrossRefPubMedGoogle Scholar
  8. Huang, Y., Dalal, S., Antonopoulos, D., Hubert, N., Raffals, L. H., Dolan, K., Weber, C., Messer, J. S., Jabri, B., Bendelac, A., et al. (2017). Early transcriptomic changes in the ileal pouch provide insight into the molecular pathogenesis of pouchitis and ulcerative colitis. Inflammatory Bowel Diseases, 23, 366–378.PubMedPubMedCentralGoogle Scholar
  9. Kadaoui, K. A., & Corthesy, B. (2007). Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer’s patches with restriction to mucosal compartment. Journal of Immunology, 179, 7751–7757.CrossRefGoogle Scholar
  10. Kau, A. L., Planer, J. D., Liu, J., Rao, S., Yatsunenko, T., Trehan, I., Manary, M. J., Liu, T. C., Stappenbeck, T. S., Maleta, K. M., et al. (2015). Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Science Translational Medicine, 7, 276ra224.CrossRefGoogle Scholar
  11. Kawamoto, S., Maruya, M., Kato, L. M., Suda, W., Atarashi, K., Doi, Y., Tsutsui, Y., Qin, H., Honda, K., Okada, T., et al. (2014). Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity, 41, 152–165.CrossRefPubMedGoogle Scholar
  12. Kawamoto, S., Tran, T. H., Maruya, M., Suzuki, K., Doi, Y., Tsutsui, Y., Kato, L. M., & Fagarasan, S. (2012). The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science, 336, 485–489.CrossRefPubMedGoogle Scholar
  13. Lelouard, H., Fallet, M., de Bovis, B., Meresse, S., & Gorvel, J. P. (2012). Peyer’s patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology, 142, 592–601 e593.CrossRefPubMedGoogle Scholar
  14. Lindner, C., Thomsen, I., Wahl, B., Ugur, M., Sethi, M. K., Friedrichsen, M., Smoczek, A., Ott, S., Baumann, U., Suerbaum, S., et al. (2015). Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nature Immunology, 16, 880–888.CrossRefPubMedGoogle Scholar
  15. Lindner, C., Wahl, B., Fohse, L., Suerbaum, S., Macpherson, A. J., Prinz, I., & Pabst, O. (2012). Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. The Journal of Experimental Medicine, 209, 365–377.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Macpherson, A. J., Koller, Y., & McCoy, K. D. (2015). The bilateral responsiveness between intestinal microbes and IgA. Trends in Immunology, 36, 460–470.CrossRefPubMedGoogle Scholar
  17. Macpherson, A. J., & McCoy, K. D. (2015). Independence day for IgA. Immunity, 43, 416–418.CrossRefPubMedGoogle Scholar
  18. Magri, G., Comerma, L., Pybus, M., Sintes, J., Llige, D., Segura-Garzon, D., Bascones, S., Yeste, A., Grasset, E. K., Gutzeit, C., et al. (2017). Human secretory IgM emerges from plasma cells clonally related to gut memory B cells and targets highly diverse commensals. Immunity, 47, 118–134 e118.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mao, A. P., Ishizuka, I. E., Kasal, D. N., Mandal, M., & Bendelac, A. (2017). A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nature Communications, 8, 863.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Masahata, K., Umemoto, E., Kayama, H., Kotani, M., Nakamura, S., Kurakawa, T., Kikuta, J., Gotoh, K., Motooka, D., Sato, S., et al. (2014). Generation of colonic IgA-secreting cells in the caecal patch. Nature Communications, 5, 3704.CrossRefPubMedGoogle Scholar
  21. Mathias, A., & Corthesy, B. (2011). Recognition of gram-positive intestinal bacteria by hybridoma- and colostrum-derived secretory immunoglobulin A is mediated by carbohydrates. The Journal of Biological Chemistry, 286, 17239–17247.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Moor, K., Diard, M., Sellin, M. E., Felmy, B., Wotzka, S. Y., Toska, A., Bakkeren, E., Arnoldini, M., Bansept, F., Co, A. D., et al. (2017). High-avidity IgA protects the intestine by enchaining growing bacteria. Nature, 544, 498–502.CrossRefPubMedGoogle Scholar
  23. Moro-Sibilot, L., Blanc, P., Taillardet, M., Bardel, E., Couillault, C., Boschetti, G., Traverse-Glehen, A., Defrance, T., Kaiserlian, D., & Dubois, B. (2016). Mouse and human liver contain immunoglobulin A-secreting cells originating from Peyer’s patches and directed against intestinal antigens. Gastroenterology, 151, 311–323.CrossRefPubMedGoogle Scholar
  24. Palm, N. W., de Zoete, M. R., Cullen, T. W., Barry, N. A., Stefanowski, J., Hao, L., Degnan, P. H., Hu, J., Peter, I., Zhang, W., et al. (2014). Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell, 158, 1000–1010.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Peterson, D. A., McNulty, N. P., Guruge, J. L., & Gordon, J. I. (2007). IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host & Microbe, 2, 328–339.CrossRefGoogle Scholar
  26. Peterson, D. A., Planer, J. D., Guruge, J. L., Xue, L., Downey-Virgin, W., Goodman, A. L., Seedorf, H., & Gordon, J. I. (2015). Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. The Journal of Biological Chemistry, 290, 12630–12649.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Phalipon, A., Cardona, A., Kraehenbuhl, J. P., Edelman, L., Sansonetti, P. J., & Corthesy, B. (2002). Secretory component: A new role in secretory IgA-mediated immune exclusion in vivo. Immunity, 17, 107–115.CrossRefPubMedGoogle Scholar
  28. Tomasi, T. B., Jr., Tan, E. M., Solomon, A., & Prendergast, R. A. (1965). Characteristics of an immune system common to certain external secretions. The Journal of Experimental Medicine, 121, 101–124.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wei, M., Shinkura, R., Doi, Y., Maruya, M., Fagarasan, S., & Honjo, T. (2011). Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nature Immunology, 12, 264–270.CrossRefPubMedGoogle Scholar
  30. Woof, J. M., & Russell, M. W. (2011). Structure and function relationships in IgA. Mucosal Immunology, 4, 590–597.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Medicine, RWTH Aachen UniversityAachenGermany

Personalised recommendations