Advertisement

Macrolides, Reflux and Respiratory Disease

  • Michael G. Crooks
  • Tamsin Nash
Chapter

Abstract

Macrolides are a family of compounds that belong to the polyketides class. They are characterised by a large macrocyclic lactone ring that is produced by chain extension of propionates to which one or more sugars (usually cladinose and desosamine) attach. Macrolides are widely used in healthcare, primarily owing to their antimicrobial properties. The spectrum of antimicrobial activity and tissue penetration makes them particularly suitable for respiratory infections (Gram-positive and some Gram-negative organisms, Chlamydia, Legionella, Mycobacteria and Mycoplasma) [1]. However, macrolides are increasingly being used for their immunomodulatory and prokinetic effects with newer agents having no discernible antimicrobial activity (e.g. Tacrolimus, Sirolimus and Everolimus) [2].

References

  1. 1.
    Baldwin DR, Wise R, Andrews JM, Ashby JP, Honeybourne D. Azithromycin concentrations at the sites of pulmonary infection. Eur Respir J. 1990;3(8):886–90.PubMedGoogle Scholar
  2. 2.
    Kwiatkowska B, Maslinska M. Macrolide therapy in chronic inflammatory diseases. Mediat Inflamm. 2012;2012:636157.CrossRefGoogle Scholar
  3. 3.
    Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2003;290(13):1749–56.PubMedCrossRefGoogle Scholar
  4. 4.
    Clement A, Tamalet A, Leroux E, Ravilly S, Fauroux B, Jais JP. Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial. Thorax. 2006;61(10):895–902.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Southern KW, Barker PM, Solis-Moya A, Patel L. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev. 2012;11:Cd002203.PubMedGoogle Scholar
  6. 6.
    Altenburg J, de Graaff CS, Stienstra Y, Sloos JH, van Haren EH, Koppers RJ, et al. Effect of azithromycin maintenance treatment on infectious exacerbations among patients with non-cystic fibrosis bronchiectasis: the BAT randomized controlled trial. JAMA. 2013;309(12):1251–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Wong C, Jayaram L, Karalus N, Eaton T, Tong C, Hockey H, et al. Azithromycin for prevention of exacerbations in non-cystic fibrosis bronchiectasis (EMBRACE): a randomised, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):660–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Hui D, Yan F, Chen RH. The effects of azithromycin on patients with diffuse panbronchiolitis: a retrospective study of 29 cases. J Thorac Dis. 2013;5(5):613–7.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Lin X, Lu J, Yang M, Dong BR, Wu HM. Macrolides for diffuse panbronchiolitis. Cochrane Database Syst Rev. 2015;(1):Cd007716.Google Scholar
  10. 10.
    Albert RK, Connett J, Bailey WC, Casaburi R, Cooper JA Jr, Criner GJ, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365(8):689–98.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ni W, Shao X, Cai X, Wei C, Cui J, Wang R, et al. Prophylactic use of macrolide antibiotics for the prevention of chronic obstructive pulmonary disease exacerbation: a meta-analysis. PLoS One. 2015;10(3):e0121257.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    McGuire J, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM, et al. Ilotycin, a new antibiotic. Antibiot Chemother. 1952;2(6):281–3.Google Scholar
  13. 13.
    Mutak S. Azalides from azithromycin to new azalide derivatives. J Antibiot. 2007;60(2):85–122.PubMedCrossRefGoogle Scholar
  14. 14.
    Morimoto S, Takahashi Y, Watanabe Y, Omura S. Chemical modification of erythromycins. I. Synthesis and antibacterial activity of 6-O-methylerythromycins A. J Antibiot. 1984;37(2):187–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Hicks LA, Taylor TH Jr, Hunkler RJ. U.S. outpatient antibiotic prescribing, 2010. N Engl J Med. 2013;368(15):1461–2.PubMedCrossRefGoogle Scholar
  16. 16.
    Crooks MG, Hart SP, Morice AH. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365(23):2234–5; author reply 6.PubMedCrossRefGoogle Scholar
  17. 17.
    Itoh Z, Suzuki T, Nakaya M, Inoue M, Mitsuhashi S. Gastrointestinal motor-stimulating activity of macrolide antibiotics and analysis of their side effects on the canine gut. Antimicrob Agents Chemother. 1984;26(6):863–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Catnach SM, Fairclough PD. Erythromycin and the gut. Gut. 1992;33(3):397–401.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hasler WL, Heldsinger A, Chung OY. Erythromycin contracts rabbit colon myocytes via occupation of motilin receptors. Am J Phys. 1992;262(1 Pt 1):G50–5.Google Scholar
  20. 20.
    Kondo Y, Torii K, Itoh Z, Omura S. Erythromycin and its derivatives with motilin-like biological activities inhibit the specific binding of 125I-motilin to duodenal muscle. Biochem Biophys Res Commun. 1988;150(2):877–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Tomomasa T, Kuroume T, Arai H, Wakabayashi K, Itoh Z. Erythromycin induces migrating motor complex in human gastrointestinal tract. Dig Dis Sci. 1986;31(2):157–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Tzovaras G, Xynos E, Chrysos E, Mantides A, Vassilakis JS. The effect of intravenous erythromycin on esophageal motility in healthy subjects. Am J Surg. 1996;171(3):316–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Pennathur A, Tran A, Cioppi M, Fayad J, Sieren GL, Little AG. Erythromycin strengthens the defective lower esophageal sphincter in patients with gastroesophageal reflux disease. Am J Surg. 1994;167(1):169–72; discussion 72-3.PubMedCrossRefGoogle Scholar
  24. 24.
    Janssens J, Peeters TL, Vantrappen G, Tack J, Urbain JL, De Roo M, et al. Improvement of gastric emptying in diabetic gastroparesis by erythromycin. Preliminary studies. N Engl J Med. 1990;322(15):1028–31.PubMedCrossRefGoogle Scholar
  25. 25.
    Stacher G, Peeters TL, Bergmann H, Wiesnagrotzki S, Schneider C, Granser-Vacariu GV, et al. Erythromycin effects on gastric emptying, antral motility and plasma motilin and pancreatic polypeptide concentrations in anorexia nervosa. Gut. 1993;34(2):166–72.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Longo WE, Vernava AM 3rd. Prokinetic agents for lower gastrointestinal motility disorders. Dis Colon Rectum. 1993;36(7):696–708.PubMedCrossRefGoogle Scholar
  27. 27.
    Rohm KD, Boldt J, Piper SN. Motility disorders in the ICU: recent therapeutic options and clinical practice. Curr Opin Clin Nutr Metab Care. 2009;12(2):161–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Bortolotti M, Brunelli F, Sarti P, Mari C, Miglioli M. Effects of oral clarithromycin and amoxycillin on interdigestive gastrointestinal motility of patients with functional dyspepsia and Helicobacter pylori gastritis. Aliment Pharmacol Ther. 1998;12(10):1021–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Acalovschi M, Dumitrascu DL, Hagiu C. Oral clarithromycin enhances gallbladder emptying induced by a mixed meal in healthy subjects. Eur J Intern Med. 2002;13(2):104–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Broad J, Sanger GJ. The antibiotic azithromycin is a motilin receptor agonist in human stomach: comparison with erythromycin. Br J Pharmacol. 2013;168(8):1859–67.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sifrim D, Matsuo H, Janssens J, Vantrappen G. Comparison of the effects of midecamycin acetate and azithromycin on gastrointestinal motility in man. Drugs Exp Clin Res. 1994;20(3):121–6.PubMedGoogle Scholar
  32. 32.
    Moshiree B, McDonald R, Hou W, Toskes PP. Comparison of the effect of azithromycin versus erythromycin on antroduodenal pressure profiles of patients with chronic functional gastrointestinal pain and gastroparesis. Dig Dis Sci. 2010;55(3):675–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Chini P, Toskes PP, Waseem S, Hou W, McDonald R, Moshiree B. Effect of azithromycin on small bowel motility in patients with gastrointestinal dysmotility. Scand J Gastroenterol. 2012;47(4):422–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Rohof WO, Bennink RJ, de Ruigh AA, Hirsch DP, Zwinderman AH, Boeckxstaens GE. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period. Gut. 2012;61(12):1670–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Jelic D, Antolovic R. From erythromycin to azithromycin and new potential ribosome-binding antimicrobials. Antibiotics. 2016;5(3):29.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Martinez FJ, Curtis JL, Albert R. Role of macrolide therapy in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008;3(3):331–50.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Suresh Babu K, Kastelik J, Morjaria JB. Role of long term antibiotics in chronic respiratory diseases. Respir Med. 2013;107(6):800–15.PubMedCrossRefGoogle Scholar
  38. 38.
    Villagrasa V, Berto L, Cortijo J, Perpina M, Sanz C, Morcillo EJ. Effects of erythromycin on chemoattractant-activated human polymorphonuclear leukocytes. Gen Pharmacol. 1997;29(4):605–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Zalewska-Kaszubska J, Gorska D. Anti-inflammatory capabilities of macrolides. Pharmacol Res. 2001;44(6):451–4.PubMedCrossRefGoogle Scholar
  40. 40.
    Willems-Widyastuti A, Vanaudenaerde BM, Vos R, Dilisen E, Verleden SE, De Vleeschauwer SI, et al. Azithromycin attenuates fibroblast growth factors induced vascular endothelial growth factor via p38(MAPK) signaling in human airway smooth muscle cells. Cell Biochem Biophys. 2013;67(2):331–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Verleden SE, Vandooren J, Vos R, Willems S, Dupont LJ, Verleden GM, et al. Azithromycin decreases MMP-9 expression in the airways of lung transplant recipients. Transpl Immunol. 2011;25(2-3):159–62.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M, et al. Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178(2):139–48.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hodge S, Reynolds PN. Low-dose azithromycin improves phagocytosis of bacteria by both alveolar and monocyte-derived macrophages in chronic obstructive pulmonary disease subjects. Respirology. 2012;17(5):802–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Nalca Y, Jansch L, Bredenbruch F, Geffers R, Buer J, Haussler S. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother. 2006;50(5):1680–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Koczulla AR, Vogelmeier CF, Garn H, Renz H. New concepts in asthma: clinical phenotypes and pathophysiological mechanisms. Drug Discov Today. 2017;22(2):388–96.PubMedCrossRefGoogle Scholar
  46. 46.
    Havemann BD, Henderson CA, El-Serag HB. The association between gastro-oesophageal reflux disease and asthma: a systematic review. Gut. 2007;56(12):1654–64.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Amarasiri DL, Pathmeswaran A, de Silva HJ, Ranasinha CD. Response of the airways and autonomic nervous system to acid perfusion of the esophagus in patients with asthma: a laboratory study. BMC Pulm Med. 2013;13:33.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lazenby JP, Harding SM. Chronic cough, asthma, and gastroesophageal reflux. Curr Gastroenterol Rep. 2000;2(3):217–23.PubMedCrossRefGoogle Scholar
  49. 49.
    Johnston SL, Szigeti M, Cross M, Brightling C, Chaudhuri R, Harrison T, et al. Efficacy and Mechanism Evaluation. A randomised, double-blind, placebo-controlled study to evaluate the efficacy of oral azithromycin as a supplement to standard care for adult patients with acute exacerbations of asthma (the AZALEA trial). Southampton: NIHR Journals Library. Copyright (c) Queen’s Printer and Controller of HMSO 2016. This work was produced by Johnston et al. under the terms of a commissioning contract issued by the Secretary of State for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK; 2016.CrossRefGoogle Scholar
  50. 50.
    Cameron EJ, Chaudhuri R, Mair F, McSharry C, Greenlaw N, Weir CJ, et al. Randomised controlled trial of azithromycin in smokers with asthma. Eur Respir J. 2013;42(5):1412–5.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Brusselle GG, Vanderstichele C, Jordens P, Deman R, Slabbynck H, Ringoet V, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68(4):322–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Hahn DL, Grasmick M, Hetzel S, Yale S. Azithromycin for bronchial asthma in adults: an effectiveness trial. J Am Board Fam Med. 2012;25(4):442–59.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Sutherland ER, King TS, Icitovic N, Ameredes BT, Bleecker E, Boushey HA, et al. A trial of clarithromycin for the treatment of suboptimally controlled asthma. J Allergy Clin Immunol. 2010;126(4):747–53.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med. 2008;177(2):148–55.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hahn DL, Plane MB, Mahdi OS, Byrne GI. Secondary outcomes of a pilot randomized trial of azithromycin treatment for asthma. PLoS Clin Trials. 2006;1(2):e11.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kostadima E, Tsiodras S, Alexopoulos EI, Kaditis AG, Mavrou I, Georgatou N, et al. Clarithromycin reduces the severity of bronchial hyperresponsiveness in patients with asthma. Eur Respir J. 2004;23(5):714–7.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kraft M, Cassell GH, Pak J, Martin RJ. Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest. 2002;121(6):1782–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Amayasu H, Yoshida S, Ebana S, Yamamoto Y, Nishikawa T, Shoji T, et al. Clarithromycin suppresses bronchial hyperresponsiveness associated with eosinophilic inflammation in patients with asthma. Ann Allergy Asthma Immunol. 2000;84(6):594–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Shoji T, Yoshida S, Sakamoto H, Hasegawa H, Nakagawa H, Amayasu H. Anti-inflammatory effect of roxithromycin in patients with aspirin-intolerant asthma. Clin Exp Allergy. 1999;29(7):950–6.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Cantu E 3rd, Appel JZ 3rd, Hartwig MG, Woreta H, Green C, Messier R, et al. J. Maxwell Chamberlain Memorial Paper. Early fundoplication prevents chronic allograft dysfunction in patients with gastroesophageal reflux disease. Ann Thorac Surg. 2004;78(4):1142–51; discussion 1142-51.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hadjiliadis D, Duane Davis R, Steele MP, Messier RH, Lau CL, Eubanks SS, et al. Gastroesophageal reflux disease in lung transplant recipients. Clin Transpl. 2003;17(4):363–8.CrossRefGoogle Scholar
  62. 62.
    Lau CL, Palmer SM, Howell DN, McMahon R, Hadjiliadis D, Gaca J, et al. Laparoscopic antireflux surgery in the lung transplant population. Surg Endosc. 2002;16(12):1674–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Hathorn KE, Chan WW, Lo WK. Role of gastroesophageal reflux disease in lung transplantation. World J Transplant. 2017;7(2):103–16.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Mertens V, Blondeau K, Pauwels A, Farre R, Vanaudenaerde B, Vos R, et al. Azithromycin reduces gastroesophageal reflux and aspiration in lung transplant recipients. Dig Dis Sci. 2009;54(5):972–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Corris PA, Ryan VA, Small T, Lordan J, Fisher AJ, Meachery G, et al. A randomised controlled trial of azithromycin therapy in bronchiolitis obliterans syndrome (BOS) post lung transplantation. Thorax. 2015;70(5):442–50.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Vos R, Vanaudenaerde BM, Verleden SE, De Vleeschauwer SI, Willems-Widyastuti A, Van Raemdonck DE, et al. A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation. Eur Respir J. 2011;37(1):164–72.PubMedCrossRefGoogle Scholar
  67. 67.
    Federica M, Nadia S, Monica M, Alessandro C, Tiberio O, Francesco B, et al. Clinical and immunological evaluation of 12-month azithromycin therapy in chronic lung allograft rejection. Clin Transpl. 2011;25(4):E381–9.CrossRefGoogle Scholar
  68. 68.
    Lam DC, Lam B, Wong MK, Lu C, Au WY, Tse EW, et al. Effects of azithromycin in bronchiolitis obliterans syndrome after hematopoietic SCT—a randomized double-blinded placebo-controlled study. Bone Marrow Transplant. 2011;46(12):1551–6.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Vos R, Vanaudenaerde BM, Ottevaere A, Verleden SE, De Vleeschauwer SI, Willems-Widyastuti A, et al. Long-term azithromycin therapy for bronchiolitis obliterans syndrome: divide and conquer? J Heart Lung Transplant. 2010;29(12):1358–68.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Jain R, Hachem RR, Morrell MR, Trulock EP, Chakinala MM, Yusen RD, et al. Azithromycin is associated with increased survival in lung transplant recipients with bronchiolitis obliterans syndrome. J Heart Lung Transplant. 2010;29(5):531–7.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gottlieb J, Szangolies J, Koehnlein T, Golpon H, Simon A, Welte T. Long-term azithromycin for bronchiolitis obliterans syndrome after lung transplantation. Transplantation. 2008;85(1):36–41.PubMedCrossRefGoogle Scholar
  72. 72.
    Chalmers JD, Aliberti S, Blasi F. Management of bronchiectasis in adults. Eur Respir J. 2015;45(5):1446–62.PubMedCrossRefGoogle Scholar
  73. 73.
    Lee AL, Button BM, Denehy L, Roberts SJ, Bamford TL, Ellis SJ, et al. Proximal and distal gastro-oesophageal reflux in chronic obstructive pulmonary disease and bronchiectasis. Respirology. 2014;19(2):211–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hu ZW, Wang ZG, Zhang Y, Wu JM, Liu JJ, Lu FF, et al. Gastroesophageal reflux in bronchiectasis and the effect of anti-reflux treatment. BMC Pulm Med. 2013;13:34.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Renna M, Schaffner C, Brown K, Shang S, Tamayo MH, Hegyi K, et al. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J Clin Invest. 2011;121(9):3554–63.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Serisier DJ, Martin ML, McGuckin MA, Lourie R, Chen AC, Brain B, et al. Effect of long-term, low-dose erythromycin on pulmonary exacerbations among patients with non-cystic fibrosis bronchiectasis: the BLESS randomized controlled trial. JAMA. 2013;309(12):1260–7.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Diego AD, Milara J, Martinez-Moragon E, Palop M, Leon M, Cortijo J. Effects of long-term azithromycin therapy on airway oxidative stress markers in non-cystic fibrosis bronchiectasis. Respirology. 2013;18(7):1056–62.PubMedGoogle Scholar
  78. 78.
    Cymbala AA, Edmonds LC, Bauer MA, Jederlinic PJ, May JJ, Victory JM, et al. The disease-modifying effects of twice-weekly oral azithromycin in patients with bronchiectasis. Treat Respir Med. 2005;4(2):117–22.PubMedCrossRefGoogle Scholar
  79. 79.
    Tsang KW, Ho PI, Chan KN, Ip MS, Lam WK, Ho CS, et al. A pilot study of low-dose erythromycin in bronchiectasis. Eur Respir J. 1999;13(2):361–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Wedzicha JA, Seemungal TA. COPD exacerbations: defining their cause and prevention. Lancet. 2007;370(9589):786–96.PubMedCrossRefGoogle Scholar
  81. 81.
    Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA. Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1418–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Seemungal T, Harper-Owen R, Bhowmik A, Moric I, Sanderson G, Message S, et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164(9):1618–23.PubMedCrossRefGoogle Scholar
  83. 83.
    Rohde G, Wiethege A, Borg I, Kauth M, Bauer TT, Gillissen A, et al. Respiratory viruses in exacerbations of chronic obstructive pulmonary disease requiring hospitalisation: a case-control study. Thorax. 2003;58(1):37–42.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wilkinson TM, Hurst JR, Perera WR, Wilks M, Donaldson GC, Wedzicha JA. Effect of interactions between lower airway bacterial and rhinoviral infection in exacerbations of COPD. Chest. 2006;129(2):317–24.PubMedCrossRefGoogle Scholar
  85. 85.
    Anthonisen NR, Manfreda J, Warren CP, Hershfield ES, Harding GK, Nelson NA. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med. 1987;106(2):196–204.PubMedCrossRefGoogle Scholar
  86. 86.
    Anderson HR, Spix C, Medina S, Schouten JP, Castellsague J, Rossi G, et al. Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: results from the APHEA project. Eur Respir J. 1997;10(5):1064–71.PubMedCrossRefGoogle Scholar
  87. 87.
    Sakae TM, Pizzichini MM, Teixeira PJ, Silva RM, Trevisol DJ, Pizzichini E. Exacerbations of COPD and symptoms of gastroesophageal reflux: a systematic review and meta-analysis. J Bras Pneumol. 2013;39(3):259–71.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Terada K, Muro S, Sato S, Ohara T, Haruna A, Marumo S, et al. Impact of gastro-oesophageal reflux disease symptoms on COPD exacerbation. Thorax. 2008;63(11):951–5.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lin YH, Tsai CL, Chien LN, Chiou HY, Jeng C. Newly diagnosed gastroesophageal reflux disease increased the risk of acute exacerbation of chronic obstructive pulmonary disease during the first year following diagnosis—a nationwide population-based cohort study. Int J Clin Pract. 2015;69(3):350–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Kim J, Lee JH, Kim Y, Kim K, Oh YM, Yoo KH, et al. Association between chronic obstructive pulmonary disease and gastroesophageal reflux disease: a national cross-sectional cohort study. BMC Pulm Med. 2013;13:51.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Martinez CH, Okajima Y, Murray S, Washko GR, Martinez FJ, Silverman EK, et al. Impact of self-reported gastroesophageal reflux disease in subjects from COPDGene cohort. Respir Res. 2014;15:62.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ingebrigtsen TS, Marott JL, Vestbo J, Nordestgaard BG, Hallas J, Lange P. Gastro-esophageal reflux disease and exacerbations in chronic obstructive pulmonary disease. Respirology. 2015;20(1):101–7.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Terada K, Muro S, Ohara T, Kudo M, Ogawa E, Hoshino Y, et al. Abnormal swallowing reflex and COPD exacerbations. Chest. 2010;137(2):326–32.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Fahim A, Crooks M, Hart SP. Gastroesophageal reflux and idiopathic pulmonary fibrosis: a review. Pulm Med. 2011;2011:634613.PubMedCrossRefGoogle Scholar
  95. 95.
    Dennish GW, Castell DO. Inhibitory effect of smoking on the lower esophageal sphincter. N Engl J Med. 1971;284(20):1136–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Wedzicha JA, Brill SE, Allinson JP, Donaldson GC. Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease. BMC Med. 2013;11:181.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Benson VS, Mullerova H, Vestbo J, Wedzicha JA, Patel A, Hurst JR. Associations between gastro-oesophageal reflux, its management and exacerbations of chronic obstructive pulmonary disease. Respir Med. 2015;109(9):1147–54.CrossRefPubMedGoogle Scholar
  98. 98.
    Sasaki T, Nakayama K, Yasuda H, Yoshida M, Asamura T, Ohrui T, et al. A randomized, single-blind study of lansoprazole for the prevention of exacerbations of chronic obstructive pulmonary disease in older patients. J Am Geriatr Soc. 2009;57(8):1453–7.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Suzuki T, Yanai M, Yamaya M, Satoh-Nakagawa T, Sekizawa K, Ishida S, et al. Erythromycin and common cold in COPD. Chest. 2001;120(3):730–3.PubMedCrossRefGoogle Scholar
  100. 100.
    Seemungal TA, Wilkinson TM, Hurst JR, Perera WR, Sapsford RJ, Wedzicha JA. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med. 2008;178(11):1139–47.CrossRefPubMedGoogle Scholar
  101. 101.
    He ZY, Ou LM, Zhang JQ, Bai J, Liu GN, Li MH, et al. Effect of 6 months of erythromycin treatment on inflammatory cells in induced sputum and exacerbations in chronic obstructive pulmonary disease. Respiration. 2010;80(6):445–52.PubMedCrossRefGoogle Scholar
  102. 102.
    Banerjee D, Khair OA, Honeybourne D. The effect of oral clarithromycin on health status and sputum bacteriology in stable COPD. Respir Med. 2005;99(2):208–15.PubMedCrossRefGoogle Scholar
  103. 103.
    Blasi F, Bonardi D, Aliberti S, Tarsia P, Confalonieri M, Amir O, et al. Long-term azithromycin use in patients with chronic obstructive pulmonary disease and tracheostomy. Pulm Pharmacol Ther. 2010;23(3):200–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Uzun S, Djamin RS, Kluytmans JA, Mulder PG, van’t Veer NE, Ermens AA, et al. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2014;2(5):361–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Berkhof FF, Doornewaard-ten Hertog NE, Uil SM, Kerstjens HA, van den Berg JW. Azithromycin and cough-specific health status in patients with chronic obstructive pulmonary disease and chronic cough: a randomised controlled trial. Respir Res. 2013;14:125.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Simpson JL, Powell H, Baines KJ, Milne D, Coxson HO, Hansbro PM, et al. The effect of azithromycin in adults with stable neutrophilic COPD: a double blind randomised, placebo controlled trial. PLoS One. 2014;9(8):e105609.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Davies JC, Alton EW, Bush A. Cystic fibrosis. BMJ. 2007;335(7632):1255–9.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros. 2015;14(3):293–304.PubMedCrossRefGoogle Scholar
  109. 109.
    Robinson NB, DiMango E. Prevalence of gastroesophageal reflux in cystic fibrosis and implications for lung disease. Ann Am Thorac Soc. 2014;11(6):964–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Pauwels A, Blondeau K, Dupont LJ, Sifrim D. Mechanisms of increased gastroesophageal reflux in patients with cystic fibrosis. Am J Gastroenterol. 2012;107(9):1346–53.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sheikh SI, Ryan-Wenger NA, McCoy KS. Outcomes of surgical management of severe GERD in patients with cystic fibrosis. Pediatr Pulmonol. 2013;48(6):556–62.PubMedCrossRefGoogle Scholar
  112. 112.
    Fathi H, Moon T, Donaldson J, Jackson W, Sedman P, Morice AH. Cough in adult cystic fibrosis: diagnosis and response to fundoplication. Cough. 2009;5:1.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Hendriks JJ, Kester AD, Donckerwolcke R, Forget PP, Wouters EF. Changes in pulmonary hyperinflation and bronchial hyperresponsiveness following treatment with lansoprazole in children with cystic fibrosis. Pediatr Pulmonol. 2001;31(1):59–66.PubMedCrossRefGoogle Scholar
  114. 114.
    Dimango E, Walker P, Keating C, Berdella M, Robinson N, Langfelder-Schwind E, et al. Effect of esomeprazole versus placebo on pulmonary exacerbations in cystic fibrosis. BMC Pulm Med. 2014;14:21.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Robinson P, Schechter MS, Sly PD, Winfield K, Smith J, Brennan S, et al. Clarithromycin therapy for patients with cystic fibrosis: a randomized controlled trial. Pediatr Pulmonol. 2012;47(6):551–7.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Saiman L, Anstead M, Mayer-Hamblett N, Lands LC, Kloster M, Hocevar-Trnka J, et al. Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2010;303(17):1707–15.PubMedCrossRefGoogle Scholar
  117. 117.
    Kabra SK, Pawaiya R, Lodha R, Kapil A, Kabra M, Vani AS, et al. Long-term daily high and low doses of azithromycin in children with cystic fibrosis: a randomized controlled trial. J Cyst Fibros. 2010;9(1):17–23.PubMedCrossRefGoogle Scholar
  118. 118.
    Steinkamp G, Schmitt-Grohe S, Doring G, Staab D, Pfrunder D, Beck G, et al. Once-weekly azithromycin in cystic fibrosis with chronic Pseudomonas aeruginosa infection. Respir Med. 2008;102(11):1643–53.PubMedCrossRefGoogle Scholar
  119. 119.
    McCormack J, Bell S, Senini S, Walmsley K, Patel K, Wainwright C, et al. Daily versus weekly azithromycin in cystic fibrosis patients. Eur Respir J. 2007;30(3):487–95.PubMedCrossRefGoogle Scholar
  120. 120.
    Equi A, Balfour-Lynn IM, Bush A, Rosenthal M. Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial. Lancet. 2002;360(9338):978–84.PubMedCrossRefGoogle Scholar
  121. 121.
    Wolter J, Seeney S, Bell S, Bowler S, Masel P, McCormack J. Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial. Thorax. 2002;57(3):212–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hull York Medical School, University of HullHullUK
  2. 2.Hull and East Yorkshire Hospitals NHS TrustHullUK

Personalised recommendations