Advertisement

Incidence and Risk of Aspiration in Mechanically Ventilated Patients

  • Miles J. Klimara
  • Rahul Nanchal
  • Nikki Johnston
Chapter

Abstract

Mechanical ventilation is essential for many patients with critical illness and respiratory failure, but places patients at risk of life-threatening complications termed ventilator-associated events (VAEs). VAEs occur in approximately 25% of mechanically ventilated patients. These increase duration of mechanical ventilation, intensive care unit (ICU) and hospital length of stay, healthcare costs, and risk of disability and death. Many VAEs are aspiration-associated events such as pneumonia and Acute Lung Injury (ALI); aspiration pneumonia in particular is the second most common diagnosis among hospitalized adult patients. However, the lack of standardized diagnostic methods to confirm suspicion of aspiration poses a barrier to diagnosis of aspiration-related events in mechanically ventilated patients. Therefore, development of biomarkers to detect the early occurrence of aspiration in mechanically ventilated patients is a national priority in the United States. These biomarkers would enable development of novel therapies and allow clinicians to institute such therapies early to attenuate the incidence of adverse events. Ongoing research aims to assess the sensitivity and specificity of specific biomarkers to detect occurrence of early aspiration events in adult and pediatric patients receiving mechanical ventilation. To this end, our research group is actively measuring pepsin and salivary amylase in tracheal aspirates from mechanically ventilated individuals as markers of gastric and oropharyngeal aspiration respectively. We hypothesize that aspiration events, identified by these markers, will correlate with incidence/time to VAEs and ICU outcomes including mortality, ventilator days, ICU days and hospital days. Accurate estimation of the incidence of aspiration and its impact on outcomes in mechanically ventilated patients will enable future trials of interventions to decrease morbidity/mortality from aspiration-associated pulmonary complications.

References

  1. 1.
    Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart TE, Benito S, Epstein SK, Apezteguia C, Nightingale P, Arroliga AC, Tobin MJ, Mechanical Ventilation International Study Group. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287(3):345–55.CrossRefPubMedGoogle Scholar
  2. 2.
    Manczur TI, Greenough A, Pryor D, Rafferty GF. Comparison of predictors of extubation from mechanical ventilation in children. Pediatr Crit Care Med. 2000;1(1):28–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Kollef MH, Hamilton CW, Ernst FR. Economic impact of ventilator-associated pneumonia in a large matched cohort. Infect Control Hosp Epidemiol. 2012;33(3):250–6.  https://doi.org/10.1086/664049.CrossRefPubMedGoogle Scholar
  4. 4.
    Blot S. Infection prevention in the ICU: more than just picking one or another preventive measure. Aust Crit Care. 2013;26(4):151–2.  https://doi.org/10.1016/j.aucc.2013.07.004.CrossRefPubMedGoogle Scholar
  5. 5.
    Timsit JF, Zahar JR, Chevret S. Attributable mortality of ventilator-associated pneumonia. Curr Opin Crit Care. 2011;17(5):464–71.  https://doi.org/10.1097/MCC.0b013e32834a5ae9.CrossRefPubMedGoogle Scholar
  6. 6.
    Safdar N, Dezfulian C, Collard HR, Saint S. Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit Care Med. 2005;33(10):2184–93.CrossRefPubMedGoogle Scholar
  7. 7.
    Berwick DM, Calkins DR, McCannon CJ, Hackbarth AD. The 100,000 lives campaign: setting a goal and a deadline for improving health care quality. JAMA. 2006;295(3):324–7.  https://doi.org/10.1001/jama.295.3.324.CrossRefPubMedGoogle Scholar
  8. 8.
    Chelluri L, Im KA, Belle SH, Schulz R, Rotondi AJ, Donahoe MP, Sirio CA, Mendelsohn AB, Pinsky MR. Long-term mortality and quality of life after prolonged mechanical ventilation. Crit Care Med. 2004;32(1):61–9.  https://doi.org/10.1097/01.CCM.0000098029.65347.F9.CrossRefPubMedGoogle Scholar
  9. 9.
    Wunsch H, Linde-Zwirble WT, Angus DC, Hartman ME, Milbrandt EB, Kahn JM. The epidemiology of mechanical ventilation use in the United States. Crit Care Med. 2010;38(10):1947–53.  https://doi.org/10.1097/CCM.0b013e3181ef4460.CrossRefPubMedGoogle Scholar
  10. 10.
    Mehta NM, Arnold JH. Mechanical ventilation in children with acute respiratory failure. Curr Opin Crit Care. 2004;10(1):7–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Metheny NA, Chang YH, Ye JS, Edwards SJ, Defer J, Dahms TE, Stewart BJ, Stone KS, Clouse RE. Pepsin as a marker for pulmonary aspiration. Am J Crit Care. 2002;11(2):150–4.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Nseir S, Zerimech F, Fournier C, Lubret R, Ramon P, Durocher A, Balduyck M. Continuous control of tracheal cuff pressure and microaspiration of gastric contents in critically ill patients. Am J Respir Crit Care Med. 2011;184(9):1041–7.  https://doi.org/10.1164/rccm.201104-0630OC.CrossRefPubMedGoogle Scholar
  13. 13.
    Torres A, Serra-Batlles J, Ros E, Piera C, Puig de la Bellacasa J, Cobos A, Lomena F, Rodriguez-Roisin R. Pulmonary aspiration of gastric contents in patients receiving mechanical ventilation: the effect of body position. Ann Intern Med. 1992;116(7):540–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Klompas M, Magill S, Robicsek A, Strymish JM, Kleinman K, Evans RS, Lloyd JF, Khan Y, Yokoe DS, Stevenson K, Samore M, Platt R, CDC Prevention Epicenters Program. Objective surveillance definitions for ventilator-associated pneumonia. Crit Care Med. 2012;40(12):3154–61.  https://doi.org/10.1097/CCM.0b013e318260c6d9.CrossRefPubMedGoogle Scholar
  15. 15.
    Restrepo MI, Anzueto A, Arroliga AC, Afessa B, Atkinson MJ, Ho NJ, Schinner R, Bracken RL, Kollef MH. Economic burden of ventilator-associated pneumonia based on total resource utilization. Infect Control Hosp Epidemiol. 2010;31(5):509–15.  https://doi.org/10.1086/651669.CrossRefPubMedGoogle Scholar
  16. 16.
    Byers JF, Sole ML. Analysis of factors related to the development of ventilator-associated pneumonia: use of existing databases. Am J Crit Care. 2000;9(5):344–9; quiz 51.PubMedGoogle Scholar
  17. 17.
    Weiss CH, Moazed F, DiBardino D, Swaroop M, Wunderink RG. Bronchoalveolar lavage amylase is associated with risk factors for aspiration and predicts bacterial pneumonia. Crit Care Med. 2013;41(3):765–73.  https://doi.org/10.1097/CCM.0b013e31827417bc.CrossRefPubMedGoogle Scholar
  18. 18.
    Meert KL, Daphtary KM, Metheny NA. Detection of pepsin and glucose in tracheal secretions as indicators of aspiration in mechanically ventilated children. Pediatr Crit Care Med. 2002;3(1):19–22.CrossRefPubMedGoogle Scholar
  19. 19.
    Farrell S, McMaster C, Gibson D, Shields MD, McCallion WA. Pepsin in bronchoalveolar lavage fluid: a specific and sensitive method of diagnosing gastro-oesophageal reflux-related pulmonary aspiration. J Pediatr Surg. 2006;41(2):289–93.  https://doi.org/10.1016/j.jpedsurg.2005.11.002.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ahrens P, Noll C, Kitz R, Willigens P, Zielen S, Hofmann D. Lipid-laden alveolar macrophages (LLAM): a useful marker of silent aspiration in children. Pediatr Pulmonol. 1999;28(2):83–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Kitz R, Boehles HJ, Rosewich M, Rose MA. Lipid-laden alveolar macrophages and pH monitoring in gastroesophageal reflux-related respiratory symptoms. Pulm Med. 2012;2012:673637.  https://doi.org/10.1155/2012/673637.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Boesch RP, Daines C, Willging JP, Kaul A, Cohen AP, Wood RE, Amin RS. Advances in the diagnosis and management of chronic pulmonary aspiration in children. Eur Respir J. 2006;28(4):847–61.  https://doi.org/10.1183/09031936.06.00138305.CrossRefPubMedGoogle Scholar
  23. 23.
    Furuya ME, Moreno-Cordova V, Ramirez-Figueroa JL, Vargas MH, Ramon-Garcia G, Ramirez-San Juan DH. Cutoff value of lipid-laden alveolar macrophages for diagnosing aspiration in infants and children. Pediatr Pulmonol. 2007;42(5):452–7.  https://doi.org/10.1002/ppul.20593.CrossRefPubMedGoogle Scholar
  24. 24.
    Reilly BK, Katz ES, Misono AS, Khatwa U, Didas A, Huang L, Haver K, Rahbar R. Utilization of lipid-laden macrophage index in evaluation of aerodigestive disorders. Laryngoscope. 2011;121(5):1055–9.  https://doi.org/10.1002/lary.21467.CrossRefPubMedGoogle Scholar
  25. 25.
    Kelly EA, Parakininkas DE, Werlin SL, Southern JF, Johnston N, Kerschner JE. Prevalence of pediatric aspiration-associated extraesophageal reflux disease. JAMA Otolaryngol Head Neck Surg. 2013.  https://doi.org/10.1001/jamaoto.2013.4448.
  26. 26.
    Krishnan U, Mitchell JD, Messina I, Day AS, Bohane TD. Assay of tracheal pepsin as a marker of reflux aspiration. J Pediatr Gastroenterol Nutr. 2002;35(3):303–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Badellino MM, Buckman RF Jr, Malaspina PJ, Eynon CA, O’Brien GM, Kueppers F. Detection of pulmonary aspiration of gastric contents in an animal model by assay of peptic activity in bronchoalveolar fluid. Crit Care Med. 1996;24(11):1881–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee JS, Song JW, Wolters PJ, Elicker BM, King TE Jr, Kim DS, Collard HR. Bronchoalveolar lavage pepsin in acute exacerbation of idiopathic pulmonary fibrosis. Eur Respir J. 2012;39(2):352–8.  https://doi.org/10.1183/09031936.00050911.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stovold R, Forrest IA, Corris PA, Murphy DM, Smith JA, Decalmer S, Johnson GE, Dark JH, Pearson JP, Ward C. Pepsin, a biomarker of gastric aspiration in lung allografts: a putative association with rejection. Am J Respir Crit Care Med. 2007;175(12):1298–303.  https://doi.org/10.1164/rccm.200610-1485OC.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fisichella PM, Davis CS, Lundberg PW, Lowery E, Burnham EL, Alex CG, Ramirez L, Pelletiere K, Love RB, Kuo PC, Kovacs EJ. The protective role of laparoscopic antireflux surgery against aspiration of pepsin after lung transplantation. Surgery. 2011;150(4):598–606.  https://doi.org/10.1016/j.surg.2011.07.053.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Philippart F, Gaudry S, Quinquis L, Lau N, Ouanes I, Touati S, Nguyen JC, Branger C, Faibis F, Mastouri M, Forceville X, Abroug F, Ricard JD, Grabar S, Misset B. Randomized intubation with polyurethane or conical cuffs to prevent pneumonia in ventilated patients. Am J Respir Crit Care Med. 2015;191(6):637–45.  https://doi.org/10.1164/rccm.201408-1398OC.CrossRefPubMedGoogle Scholar
  32. 32.
    Jaillette E, Girault C, Brunin G, Zerimech F, Behal H, Chiche A, Broucqsault-Deirdre C, Fayolle C, Minacori F, Alves I, Barrailler S, Labreuche J, Robriquet L, Tamion F, Delaporte E, Thellier D, Delcourte C, Duhamel A, Nseir S. Impact of tapered-cuff tracheal tube on microaspiration of gastric contents in intubated critically ill patients: a multicenter cluster-randomized cross-over controlled trial. Intensive Care Med. 2017.  https://doi.org/10.1007/s00134-017-4736-x.
  33. 33.
    Brett S. Science review: the use of proton pump inhibitors for gastric acid suppression in critical illness. Crit Care. 2005;9(1):45–50.  https://doi.org/10.1186/cc2980.CrossRefPubMedGoogle Scholar
  34. 34.
    Martinucci I, et al. Optimal treatment of laryngopharyngeal reflux disease. Ther Adv Chronic Dis. 2013;4:287–301.  https://doi.org/10.1177/2040622313503485.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Eherer AJ, Habermann W, Hammer HF, Kiesler K, Friedrich G, Krejs GJ. Effect of pantoprazole on the course of reflux-associated laryngitis: a placebo-controlled double-blind crossover study. Scand J Gastroenterol. 2003;38:462–7.CrossRefPubMedGoogle Scholar
  36. 36.
    El-Serag HB, Lee P, Buchner A, Inadomi JM, Gavin M, McCarthy DM. Lansoprazole treatment of patients with chronic idiopathic laryngitis: a placebo-controlled trial. Am J Gastroenterol. 2001;96:979–83.  https://doi.org/10.1111/j.1572-0241.2001.03681.x.CrossRefPubMedGoogle Scholar
  37. 37.
    Noordzij JP, Khidr A, Evans BA, Desper E, Mittal RK, Reibel JF, Levine PA. Evaluation of omeprazole in the treatment of reflux laryngitis: a prospective, placebo-controlled, randomized, double-blind study. Laryngoscope. 2001;111:2147–51.  https://doi.org/10.1097/00005537-200112000-00013.CrossRefPubMedGoogle Scholar
  38. 38.
    Steward DL, Wilson KM, Kelly DH, Patil MS, Schwartzbauer HR, Long JD, Welge JA. Proton pump inhibitor therapy for chronic laryngo-pharyngitis: a randomized placebo-control trial. Otolaryngol Head Neck Surg. 2004;131(4):342–50.  https://doi.org/10.1016/j.otohns.2004.03.037.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wo JM, Koopman J, Harrell SP, Parker K, Winstead W, Lentsch E. Double-blind, placebo-controlled trial with single-dose pantoprazole for laryngopharyngeal reflux. Am J Gastroenterol. 2006;101(9):1972–8; quiz 2169.  https://doi.org/10.1111/j.1572-0241.2006.00693.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Vaezi MF, Richter JE, Stasney CR, Spiegel JR, Iannuzzi RA, Crawley JA, Hwang C, Sostek MB, Shaker R. Treatment of chronic posterior laryngitis with esomeprazole. Laryngoscope. 2006;116(2):254–60.  https://doi.org/10.1097/01.mlg.0000192173.00498.ba.CrossRefPubMedGoogle Scholar
  41. 41.
    Francis DO, Rymer JA, Slaughter JC, Choksi Y, Jiramongkolchai P, Ogbeide E, Tran C, Goutte M, Gaelyn Garrett C, Hagaman D, Vaezi MF. High economic burden of caring for patients with suspected extraesophageal reflux. Am J Gastroenterol. 2013;108:905–11.  https://doi.org/10.1038/ajg.2013.69.CrossRefPubMedGoogle Scholar
  42. 42.
    Pauwels A, Verleden S, Farre R, Vanaudenaerde BM, Van Raemdonck D, Verleden G, Sifrim D, Dupont LJ. The effect of gastric juice on interleukin-8 production by cystic fibrosis primary bronchial epithelial cells. J Cyst Fibros. 2013;12:700–5.  https://doi.org/10.1016/j.jcf.2013.03.006.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Johnston N, Dettmar PW, Bishwokarma B, et al. Activity/stability of human pepsin: implications for reflux attributed laryngeal disease. Laryngoscope. 2007;117:1036–9.  https://doi.org/10.1097/MLG.0b013e31804154c3.CrossRefPubMedGoogle Scholar
  44. 44.
    Johnston N, Wells CW, Samuels TL, Blumin JH. Pepsin in nonacidic refluxate can damage hypopharyngeal epithelial cells. Ann Otol Rhinol Laryngol. 2009;118:677–85.  https://doi.org/10.1177/000348940911800913.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Johnston N, Wells CW, Samuels TL, Blumin JH. Rationale for targeting pepsin in the treatment of reflux disease. Ann Otol Rhinol Laryngol. 2010;119:547–58.  https://doi.org/10.1177/000348941011900808.CrossRefPubMedGoogle Scholar
  46. 46.
    Samuels TL, Johnston N. Pepsin as a causal agent of inflammation during nonacidic reflux. Otolaryngol Head Neck Surg. 2009;141:559–63.  https://doi.org/10.1016/j.otohns.2009.08.022.CrossRefPubMedGoogle Scholar
  47. 47.
    Bardhan KD, Strugala V, Dettmar PW. Reflux revisited: advancing the role of pepsin. Int J Otolaryngol. 2012;2012:646901.  https://doi.org/10.1155/2012/646901.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Dettmar PW, Castell DO, Heading RC, Eds. Reflux and its consequences - The Laryngeal, Pulmonary and Oesophageal Manifestations. Aliment Pharmacol Ther. 2011;33(Suppl 1):1–71. https://doi.org/10.1111/j.1365-2036.2011.04581.x.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Miles J. Klimara
    • 1
  • Rahul Nanchal
    • 2
  • Nikki Johnston
    • 1
    • 3
  1. 1.Department of Otolaryngology and Communication SciencesMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of MedicineMedical College of WisconsinMilwaukeeUSA
  3. 3.Department of Microbiology and ImmunologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations