Electrochemistry and First Principles of Quantum Mechanics

  • Paulo Roberto BuenoEmail author
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


In Chap.  1, we demonstrated that nanoscale electronics and electrochemistry both originate from the same physical background and are underpinned by chemical capacitance and its association with quantised relaxation resistance, thus defining the timescale of electronic processes that occur at the molecular scale.


  1. 1.
    P.R. Bueno, G.T. Feliciano, J.J. Davis, Capacitance spectroscopy and density functional theory. Phys. Chem. Chem. Phys. 17, 9375–9382 (2015)CrossRefGoogle Scholar
  2. 2.
    R.G. Parr, Y. Weitao, Density-functional theory of atoms and molecules. Oxford Science Publication (1994)Google Scholar
  3. 3.
    R.G. Parr, W.T. Yang, Density-functional theory of electronic-structure of molecules. Annu. Rev. Phys. Chem. 46, 701–728 (1995)CrossRefGoogle Scholar
  4. 4.
    P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136(3B), B864 (1964)CrossRefGoogle Scholar
  5. 5.
    F. De Proft, P. Geerlings, Conceptual and computational DFT in the study of aromaticity. Chem. Rev. 101(5), 1451–1464 (2001)CrossRefGoogle Scholar
  6. 6.
    P. Senet, Kohn-Sham orbital formulation of the chemical electronic responses, including the hardness. J. Chem. Phys. 107(7), 2516–2524 (1997)CrossRefGoogle Scholar
  7. 7.
    H. Chermette, Chemical reactivity indexes in density functional theory. J. Comput. Chem. 20(1), 129–154 (1999)CrossRefGoogle Scholar
  8. 8.
    P.W. Ayers, J.S.M. Anderson, L.J. Bartolotti, Perturbative perspectives on the chemical reaction prediction problem. Int. J. Quantum Chem. 101(5), 520–534 (2005)CrossRefGoogle Scholar
  9. 9.
    B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and ttechnological applications. (Springer, Berlin, 1999)CrossRefGoogle Scholar
  10. 10.
    R.G. Parr, W.T. Yang, Density-function theory of electronic-structure of molecules. Annu. Rev. Phys. Chem. 46, 701–728 (1995)CrossRefGoogle Scholar
  11. 11.
    P. Senet, Nonlinear electronic responses, Fukui functions and hardnesses as functionals of the ground-state electronic density. J. Chem. Phys. 105(15), 6471–6489 (1996)CrossRefGoogle Scholar
  12. 12.
    G.J. Iafrate, K. Hess, J.B. Krieger, M. Macucci, Capacitive nature of atomic-sized structures. Phys. Rev. B 52(15), 10737–10739 (1995)CrossRefGoogle Scholar
  13. 13.
    J. Luo, Z.Q. Xue, W.M. Liu, J.L. Wu, Z.Q. Yang, Koopmans’ theorem for large molecular systems within density functional theory. J. Phys. Chem. A 110(43), 12005–12009 (2006)CrossRefGoogle Scholar
  14. 14.
    P.R. Bueno, J.J. Davis, Measuring quantum capacitance in energetically addressable molecular layers. Anal. Chem. 86(3), 1337–1341 (2014)CrossRefGoogle Scholar
  15. 15.
    N.J. Tao, Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys. Rev. Lett. 76(21), 4066–4069 (1996)CrossRefGoogle Scholar
  16. 16.
    W.C. Ribeiro, L.M. Goncalves, S. Liebana, M.I. Pividori, P.R. Bueno, Molecular conductance of double-stranded DNA evaluated by electrochemical capacitance spectroscopy. Nanoscale 8(16), 8931–8938 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Büttiker, H. Thomas, A. Prêtre, Mesoscopic capacitors. Phys. Lett. A 180, 364–369 (1993)CrossRefGoogle Scholar
  18. 18.
    D.A. Miranda, P.R. Bueno, Density functional theory and an experimentally-designed energy functional of electron density. Phys. Chem. Chem. Phys. 18(37), 25984–25992 (2016)CrossRefGoogle Scholar
  19. 19.
    P.R. Bueno, D.A. Miranda, Conceptual density functional theory for electron transfer and transport in mesoscopic systems. Phys. Chem. Chem. Phys. 19(8), 6184–6195 (2017)CrossRefGoogle Scholar
  20. 20.
    W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), 1133 (1965)CrossRefGoogle Scholar
  21. 21.
    F.C.B. Fernandes, M.S. Goes, J.J. Davis, P.R. Bueno, Label free redox capacitive biosensing. Biosens. Bioelectron. 50, 437–440 (2013)CrossRefGoogle Scholar
  22. 22.
    F.C.B. Fernandes, A. Santos, D.C. Martins, M.S. Goes, P.R. Bueno, Comparing label free electrochemical impedimetric and capacitive biosensing architectures. Biosens. Bioelectron. 57, 96–102 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Lehr, G.C. Hobhouse, F.C.B. Fernandes, P.R. Bueno, J.J. Davis, Label-free capacitive diagnostics: exploiting local redox probe state occupancy (vol. 86, p 2559). Anal. Chem. 86(7), 3682–3682 (2014)CrossRefGoogle Scholar
  24. 24.
    P.R. Bueno, T.A. Benites, M.S. Goes, J.J. Davis, A facile measurement of heterogeneous electron transfer kinetics. Anal. Chem. 85(22), 10920–10926 (2013)CrossRefGoogle Scholar
  25. 25.
    P.R. Bueno, J.J. Davis, Elucidating redox level dispersion and local dielectric effects within electroactive molecular films. Anal. Chem. 86(4), 1977–2004 (2014)CrossRefGoogle Scholar
  26. 26.
    P.R. Bueno, G. Mizzon, J.J. Davis, Capacitance spectroscopy: a versatile approach to resolving the redox density of states and kinetics in redox-active self-assembled monolayers. J. Phys. Chem. B 116(30), 8822–8829 (2012)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.São Paulo State University (UNESP)AraraquaraBrazil

Personalised recommendations