Advertisement

PET/CT in Immunodeficiency Disorders

  • Alfred Ankrah
  • Mike Sathekge
Chapter
Part of the Clinicians’ Guides to Radionuclide Hybrid Imaging book series (CGRHI)

Abstract

Immunodeficiency disorders encompass a wide array of clinical conditions in which there is an aberration of one or more of the components of the immune system. These disorders may be primary or secondary to some other condition. Primary disorders usually become apparent in childhood but may present later in life. Secondary immunodeficiency disorders are more common [1, 2]. The last few decades have witnessed a steady increase in the population with immunodeficiency disorders. This is as a result of a number of factors. The high prevalence of HIV with 36.7 million infections worldwide is an important contributing factor [3]. In addition, advances in medical intervention have increased the immunocompromised population considerably. There are more patients in the posttransplant state who are on immunosuppressive therapy, more people using potent anti-cancer chemotherapy, and an increased survival of patients with hematologic disorders and malignancies [1]. Also, chronic disease such as diabetes mellitus and the use of drugs such as corticosteroids or immunosuppressant in inflammatory disease have added to the numbers. Finally, our increased understanding of underlying mechanism of immunosuppression with the discovery of new primary immunodeficiency has also contributed to this increase [1, 4].

References

  1. 1.
    Mortaz E, Tabarsi P, Mansouri D, Khosravi A, Garssen J, Velayati A, Adcock IM. Cancers related to immunodeficiencies: update and perspectives. Front Immunol. 2016;7:365. eCollection 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chinen J, Shearer WT. Secondary immunodeficiencies, including HIV infection. J Allergy Clin Immunol. 2010;125:S195–203.CrossRefPubMedGoogle Scholar
  3. 3.
    UNAIDS. Global AIDS update 2016 UNAIDS report. http://www.who.int/hiv/pub/arv/global-aids-update-2016-pub/en/. Accessed 16 Nov 2016.
  4. 4.
    Verma N, Thaventhiran A, Gathmann B, ESID Registry Working Party, Thaventhiran J, Grimbacher B. Therapeutic management of primary immunodeficiency in older patients. Drugs Aging. 2013;30:503–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Fishman JA. Infections in immunocompromised hosts and organ transplant recipients: essentials. Liver Transpl. 2011;17:S34–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Bedimo R. Non-AIDS-defining malignancies among HIV-infected patients in the highly active antiretroviral therapy era. Curr HIV/AIDS Rep. 2008;5:140–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Kidd EA, Grigsby PW. Intratumoral metabolic heterogeneity of cervical cancer. Clin Cancer Res. 2008;14:5236–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Bonnet F, Chêne G. Evolving epidemiology of malignancies in HIV. Curr Opin Oncol. 2008;20:534–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Powles T, Robinson D, Stebbing J, et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. J Clin Oncol. 2008;27:884–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Shiels MS, Engels EA. Evolving epidemiology of HIV-associated malignancies. Curr Opin HIV AIDS. 2017;12(1):6–11.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sathekge M, Maes A, Van de Wiele C. FDG-PET imaging in HIV infection and tuberculosis. Semin Nucl Med. 2013;43:349–66.CrossRefPubMedGoogle Scholar
  12. 12.
    Poeppel TD, Krause BJ, Heusner TA, Boy C, Bockisch A, Antoch G. PET/CT for the staging and follow-up of patients with malignancies. Eur J Radiol. 2009;70:382–92.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee ST, Scott AM. The current role of PET/CT in radiotherapy planning. Curr Radiopharm. 2015;8:38–44.CrossRefPubMedGoogle Scholar
  14. 14.
    Gallamini A, Zwarthoed C, Borra A. Positron emission tomography (PET) in oncology. Cancers (Basel). 2014;6:1821–89.CrossRefGoogle Scholar
  15. 15.
    Herrera FG, Prior JO. The role of PET/CT in cervical cancer. Front Oncol. 2013;3:34.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Khiewvan B, Torigian DA, Emamzadehfard S, Paydary K, Salavati A, Houshmand S, et al. Update of the role of PET/CT and PET/MRI in the management of patients with cervical cancer. Hell J Nucl Med. 2016;19(3):254–68.  https://doi.org/10.1967/s002449910409.CrossRefPubMedGoogle Scholar
  17. 17.
    Gallamini A, Borra A. Role of PET in lymphoma. Curr Treat Options in Oncol. 2014;15:248–61.CrossRefGoogle Scholar
  18. 18.
    Tateishi U. PET/CT in malignant lymphoma: basic information, clinical application, and proposal. Int J Hematol. 2013;98:398–405.CrossRefPubMedGoogle Scholar
  19. 19.
    Heald A, Hoffman JM, Bartlett J, Waskin H. Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS. 1996;7:337–46.CrossRefPubMedGoogle Scholar
  20. 20.
    O’Doherty M, Barrington S, Campbell M, Lowe J, Bradbeer C. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med. 1997;38:1575–83.PubMedGoogle Scholar
  21. 21.
    van de Luijtgaarden A, van der Ven A, Leenders W, et al. Imaging of HIV-associated Kaposi sarcoma. F-18-FDG-PET/CT and In-111-bevacizumabscintigraphy. J AIDS. 2010;54:444–6.Google Scholar
  22. 22.
    Morooka M, Ito K, Kubota K, et al. Whole-body 18F-fluorodeoxyglucose positron emission tomography/computed tomography images before and after chemotherapy for Kaposi sarcoma and highly active antiretrovirus therapy. Jpn J Radiol. 2010;28:759–62.CrossRefPubMedGoogle Scholar
  23. 23.
    Vorster M, Sathekge MM, Bomanji J. Advances in imaging of tuberculosis: the role of 18F-FDG PET and PET/CT. Curr Opin Pulm Med. 2014;20:287–93.CrossRefPubMedGoogle Scholar
  24. 24.
    Ankrah AO, van der Werf TS, de Vries EF, Dierckx RA, Sathekge MM, Glaudemans AW. PET/CT imaging of mycobacterium tuberculosis infection. Clin Transl Imaging. 2016;4:131–44.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Skoura E, Zumla A, Bomanji J. Imaging in tuberculosis. Int J Infect Dis. 2015;32:87–93.CrossRefPubMedGoogle Scholar
  26. 26.
    Ebner L, Walti LN, Rauch A, Furrer H, Cusini A, Meyer AM, Weiler S, et al. Clinical course, radiological manifestations, and outcome of pneumocystis jirovecii pneumonia in HIV patients and renal transplant recipients. PLoS One. 2016;11:e0164320.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kono M, Yamashita H, Kubota K, Kano T, Mimori A. FDG PET imaging in pneumocystis pneumonia. Clin Nucl Med. 2015;40:679–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Bleeker-Rovers CP, van der Meer JW, Oyen WJ. Fever of unknown origin. Semin Nucl Med. 2009;39:81–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Keidar Z, Gurman-balbir A, Gaitini D, Israel O. Fever of unknown origin: the role of 18F-FDGPET/CT. J Nucl Med. 2008;49:1980–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Martin C, Castaigne C, Tondeur M, Flamen P, De Wit S. Role and interpretation of FDG-PET/CT in HIV patients with fever of unknown origin: a prospective study. J Int AIDS Soc. 2012;15(Suppl 4):18107.PubMedCentralGoogle Scholar
  31. 31.
    Bleeker-Rovers C, van der Ven A, Zomer B, de Geus-Oei LF, Smits P, Corstens FH, et al. F-18-Fluorodexoyglucose positron emission tomography for visualization of lipodystrophy in HIV-infected patients. AIDS. 2004;18:2430–2.PubMedGoogle Scholar
  32. 32.
    Sathekge M, Maes A, Kgomo M, Stolz A, Ankrah A, Van de Wiele C. Evaluation of glucose uptake by skeletal muscle tissue and subcutaneous fat in HIV-infected patients with and without lipodystrophy using FDG-PET. Nucl Med Commun. 2010;31:311–4.CrossRefPubMedGoogle Scholar
  33. 33.
    Rottenberg D, Sidtis J, Strother S, Schaper KA, Anderson JR, Nelson MJ, Price RW. Abnormal cerebral glucose metabolism in HIV-1 seropositive subjects with and without dementia. J Nucl Med. 1996;37:1133–41.PubMedGoogle Scholar
  34. 34.
    Sathekge M, McFarren A, Dadachova E. Role of nuclear medicine in neuroHIV: PET, SPECT, and beyond. Nucl Med Commun. 2014;35(8):792–6.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Yarasheski KE, Laciny E, Overton ET, Reeds DN, Harrod M, Baldwin S, Dávila-Román VG. 18FDG PET-CT imaging detects arterial inflammation and early atherosclerosis in HIV-infected adults with cardiovascular disease risk factors. J Inflamm (Lond). 2012;9:26.CrossRefGoogle Scholar
  36. 36.
    Subramanian S, Tawakol A, Burdo TH, Abbara S, Wei J, Vijayakumar J, et al. Arterial inflammation in patients with HIV. JAMA. 2012;308:379–86.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Long B, Koyfman A. The emergency medicine approach to transplant complications. Am J Emerg Med. 2016;34:2200–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Katabathina VS, Menias CO, Tammisetti VS, Lubner MG, Kielar A, Shaaban A, et al. Malignancy after solid organ transplantation: comprehensive imaging review. Radiographics. 2016;36(5):1390–407.CrossRefPubMedGoogle Scholar
  39. 39.
    Wareham NE, Lundgren JD, Da Cunha-Bang C, Gustafsson F, Iversen M, Johannesen HH, et al. The clinical utility of FDG PET/CT among solid organ transplant recipients suspected of malignancy or infection. Eur J Nucl Med Mol Imaging. 2017;44(3):421–31.  https://doi.org/10.1007/s00259-016-3564-5.CrossRefPubMedGoogle Scholar
  40. 40.
    Bianchi E, Pascual M, Nicod M, Delaloye AB, Duchosal MA. Clinical usefulness of FDG-PET/CT scan imaging in the management of posttransplant lymphoproliferative disease. Transplantation. 2008;85(5):707–12.CrossRefPubMedGoogle Scholar
  41. 41.
    Bodet-Milin C, Lacombe M, Malard F, Lestang E, Cahu X, Chevallier P, et al. 18F-FDG PET/CT for the assessment of gastrointestinal GVHD: results of a pilot study. Bone Marrow Transplant. 2014;49(1):131–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Stelljes M, Hermann S, Albring J, Köhler G, Löffler M, Franzius C, et al. Clinical molecular imaging in intestinal graft-versus-host disease: mapping of disease activity, prediction, and monitoring of treatment efficiency by positron emission tomography. Blood. 2008;111:2909–18.CrossRefPubMedGoogle Scholar
  43. 43.
    Johnston PB, Wiseman GA, Micallef IN. Positron emission tomography using F-18 fluorodeoxyglucose pre- and post-autologous stem cell transplant in non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2008;41:919–25.CrossRefPubMedGoogle Scholar
  44. 44.
    Sucak GT, Özkurt ZN, Suyani E, Yaşar DG, Akdemir ÖÜ, Aki Z, et al. Early post-transplantation positron emission tomography in patients with Hodgkin lymphoma is an independent prognostic factor with an impact on overall survival. Ann Hematol. 2011;90:1329–36.CrossRefPubMedGoogle Scholar
  45. 45.
    Sauter CS, Lechner L, Scordo M, Zheng J, Devlin SM, Fleming SE, et al. Pretransplantation fluorine-18-deoxyglucose—positron emission tomography scan lacks prognostic value in chemosensitive B cell non-hodgkin lymphoma patients undergoing nonmyeloablative allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20:881–4.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sauter CS, Matasar MJ, Meikle J, Schoder H, Ulaner GA, Migliacci JC, et al. Prognostic value of FDG-PET prior to autologous stem cell transplantation for relapsed and refractory diffuse large B-cell lymphoma. Blood. 2015;125:2579–81.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gentzler RD, Evens AM, Rademaker AW, Weitner BB, Mittal BB, Dillehay GL, et al. F-18 FDG-PET predicts outcomes for patients receiving total lymphoid irradiation and autologous blood stem-cell transplantation for relapsed and refractory Hodgkin lymphoma. Br J Haematol. 2014;165(6):793–800.CrossRefPubMedGoogle Scholar
  48. 48.
    Valls L, Badve C, Avril S, Herrmann K, Faulhaber P, O’Donnell J, Avril N. FDG-PET imaging in hematological malignancies. Blood Rev. 2016;30:317–31.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Schwenzer NF, Pfannenberg AC. PET/CT, MR, and PET/MR in lymphoma and melanoma. Semin Nucl Med. 2015;45:322–31.CrossRefPubMedGoogle Scholar
  50. 50.
    Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Adams HJ, de Klerk JM, Fijnheer R, Heggelman BG, Dubois SV, Nievelstein RA, et al. Bone marrow biopsy in diffuse large B-cell lymphoma: useful or redundant test? Acta Oncol. 2015;54:67–72.CrossRefPubMedGoogle Scholar
  52. 52.
    Lim ST, Tao M, Cheung YB, Rajan S, Mann B. Can patients with early-stage diffuse large B-cell lymphoma be treated without bone marrow biopsy? Ann Oncol. 2005;16:215–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Noy A, Schoder H, Gonen M, Weissler M, Ertelt K, Cohler C, et al. The majority of transformed lymphomas have high standardized uptake values (SUVs) on positron emission tomography (PET) scanning similar to diffuse large B-cell lymphoma (DLBCL). Ann Oncol. 2009;20:508–51.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol. 2014;32:3048–58.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Derlin T, Bannas P. Imaging of multiple myeloma: current concepts. World J Orthod. 2014;5:272–82.CrossRefGoogle Scholar
  56. 56.
    Haznedar R, Aki SZ, Akdemir OU, Ozkurt ZN, Ceneli O, Yagci M, et al. Value of 18F-fluorodeoxyglucose uptake in positron emission tomography/computed tomography in predicting survival in multiple myeloma. Eur J Nucl Med Mol Imaging. 2011;38:1046–53.CrossRefPubMedGoogle Scholar
  57. 57.
    Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118:5989–95.CrossRefPubMedGoogle Scholar
  58. 58.
    Sager S, Ergul N, Ciftci H, Cetin G, Guner SI, Cermik TF. The value of FDG PET/CT in the initial staging and bone marrow involvement of patients with multiple myeloma. Skelet Radiol. 2011;40(7):843.CrossRefGoogle Scholar
  59. 59.
    Nanni C, Zamagni E, Celli M, Caroli P, Ambrosini V, Tacchetti P, et al. The value of 18F-FDG PET/CT after autologous stem cell transplantation (ASCT) in patients affected by multiple myeloma (MM): experience with 77 patients. Clin Nucl Med. 2013;38:e74–e7.CrossRefPubMedGoogle Scholar
  60. 60.
    Usmani SZ, Mitchell A, Waheed S, Crowley J, Hoering A, Petty N, et al. Prognostic implications of serial 18-fluoro-deoxyglucose emission tomography in multiple myeloma treated with total therapy. Blood. 2013;121:1819–23.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Chargari C, Vennarini S, Servois V, Bonardel G, Lahutte M, Fourquet A, et al. Place of modern imaging modalities for solitary plasmacytoma: toward improved primary staging and treatment monitoring. Crit Rev Oncol Hematol. 2012;82:150–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Seam P, Juweid ME, Cheson BD. The role of FDG-PET scans in patients with lymphoma. Blood. 2007;110:3507–16.CrossRefPubMedGoogle Scholar
  63. 63.
    Bruzzi JF, Macapinlac H, Tsimberidou AM, Truong MT, Keating MJ, Marom EM, et al. Detection of Richter’s transformation of chronic lymphocytic leukemia by PET/CT. J Nucl Med. 2006;47:1267–73.PubMedGoogle Scholar
  64. 64.
    Rossi D. Richter’s syndrome: novel and promising therapeutic alternatives. Best Pract Res Clin Haematol. 2016;29:30–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Stolzel F, Rollig C, Radke J, Mohr B, Platzbecker U, Bornhauser M, et al. 18F-FDG-PET/CT for detection of extramedullary acute myeloid leukemia. Haematologica. 2011;96:1552–6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kriengkauykiat J, Ito JI, Dadwal SS. Epidemiology and treatment approaches in management of invasive fungal infections. Clin Epidemiol. 2011;3:175–91.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Ankrah AO, Sathekge MM, Dierckx RA, Glaudemans AW. Imaging fungal infections in children. Clin Transl Imaging. 2016;4:57–72.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ichiya Y, Kuwabara Y, Sasaki M, Yoshida T, Akashi Y, Murayama S, et al. FDG-PET in infectious lesions: the detection and assessment of lesion activity. Ann Nucl Med. 1996;10:185–91.CrossRefPubMedGoogle Scholar
  69. 69.
    Hot A, Maunoury C, Poiree S, Lanternier F, Viard JP, Loulergue P, et al. Diagnostic contribution of positron emission tomography with [18F]fluorodeoxyglucose for invasive fungal infections. Clin Microbiol Infect. 2011;17(3):409–17.CrossRefPubMedGoogle Scholar
  70. 70.
    Bleeker-Rovers CP, Warris A, Drenth JP, Corstens FH, Oyen WJ, Kullberg BJ. Diagnosis of Candida lung abscesses by 18F-fluorodeoxyglucose positron emission tomography. Clin Microbiol Infect. 2005;11:493–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Sharma P, Mukherjee A, Karunanithi S, Bal C, Kumar R. Potential role of 18F-FDG PET/CT in patients with fungal infections. AJR Am J Roentgenol. 2014;203:180–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Miyazaki Y, Nawa Y, Nakase K, Kohashi S, Kadohisa S, Hiraoka A, et al. FDG-PET can evaluate the treatment for fungal liver abscess much earlier than other imagings. Ann Hematol. 2011;90:1489–90.CrossRefPubMedGoogle Scholar
  73. 73.
    Vos FJ, Donnelly JP, Oyen WJ, Kullberg BJ, Bleeker-Rovers CP, et al. 18F-FDG PET/CT for diagnosing infectious complications in patients with severe neutropenia after intensive chemotherapy for haematological malignancy or stem cell transplantation. Eur J Nucl Med Mol Imaging. 2012;39:120–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Vos FJ, Bleeker-Rovers CP, Oyen WJ. The use of FDG-PET/CT in patients with febrile neutropenia. Semin Nucl Med. 2013;43:340–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Glaudemans AW, de Vries EF, Galli F, Dierckx RA, Slart RH, Signore A. The use of F-FDG-PET/CT for diagnosis and treatment monitoring of inflammatory and infectious diseases. Clin Dev Immunol. 2013;2013:623036.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Palestro CJ. FDG-PET in musculoskeletal infections. Semin Nucl Med. 2013;43(5):367–76.CrossRefPubMedGoogle Scholar
  77. 77.
    Familiari D, Glaudemans AW, Vitale V, Prosperi D, Bagni O, Lenza A, Cavallini M, et al. Can sequential 18F-FDG PET/CT replace WBC imaging in the diabetic foot? Nucl Med. 2011;52:1012–9.CrossRefGoogle Scholar
  78. 78.
    Palestro CJ. 18F-FDG and diabetic foot infections: the verdict is…. J Nucl Med. 2011;52(7):1009–11.CrossRefPubMedGoogle Scholar
  79. 79.
    Kagna O, Srour S, Melamed E, Militianu D, Keidar Z. FDG PET/CT imaging in the diagnosis of osteomyelitis in the diabetic foot. Eur J Nucl Med Mol Imaging. 2012;39:1545–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Gnanasegaran G, Vijayanathan S, Fogelman I. Diagnosis of infection in the diabetic foot using (18)F-FDG PET/CT: a sweet alternative? Eur J Nucl Med Mol Imaging. 2012;39:1525–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Nawaz A, Torigian DA, Siegelman ES, Basu S, Chryssikos T, Alavi A. Diagnostic performance of FDG-PET, MRI, and plain film radiography (PFR) for the diagnosis of osteomyelitis in the diabetic foot. Mol Imaging Biol. 2010;12(3):335–42.CrossRefPubMedGoogle Scholar
  82. 82.
    Palestro CJ. Radionuclide imaging of musculoskeletal infection: a review. J Nucl Med. 2016;57:1406–12.CrossRefPubMedGoogle Scholar
  83. 83.
    Gomes A, Glaudemans AW, Touw DJ, van Melle JP, Willems TP, Maass AH, et al. Diagnostic value of imaging in infective endocarditis: a systematic review. Lancet Infect Dis. 2016;17(1):e1–e14.  https://doi.org/10.1016/S1473-3099(16)30141-4.CrossRefPubMedGoogle Scholar
  84. 84.
    Gomes A, Slart RH, Sinha B, Glaudemans AW. 18F-FDG PET/CT in the diagnostic workup of infective endocarditis and related intracardiac prosthetic material: a clear message. J Nucl Med. 2016;57:1669–71.CrossRefPubMedGoogle Scholar
  85. 85.
    Herrmann K, Buck AK, Schuster T, Rudelius M, Wester HJ, Graf N, et al. A pilot study to evaluate 3′-deoxy-3′-18F-fluorothymidine pet for initial and early response imaging in mantle cell lymphoma. J Nucl Med. 2011;52:1898–902.CrossRefPubMedGoogle Scholar
  86. 86.
    Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66:11055–106.CrossRefPubMedGoogle Scholar
  87. 87.
    Hutchings M. Pre-transplant positron emission tomography/computed tomography (PET/CT) in relapsed Hodgkin lymphoma: time to shift gears for PET-positive patients? Leuk Lymphoma. 2011;52:15–1616.CrossRefGoogle Scholar
  88. 88.
    Gourni E, Demmer O, Schottelius M, D’Alessandria C, Schulz S, Dijkgraaf I, et al. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J Nucl Med. 2011;52:1803–10.CrossRefPubMedGoogle Scholar
  89. 89.
    Wester HJ, Keller U, Schottelius M, Beer A, Philipp-Abbrederis K, Hoffmann F, et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics. 2015;5:618–30.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Philipp-Abbrederis K, Herrmann K, Knop S, Schottelius M, Eiber M, Luckerath K, et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol Med. 2015;7:477–87.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Vorster M, Maes A, Cv W, Sathekge M. Gallium-68 PET: a powerful generator-based alternative to infection and inflammation imaging. Semin Nucl Med. 2016;46(5):436–47.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nuclear MedicineUniversity of Pretoria and Steve Biko Academic HospitalPretoriaSouth Africa

Personalised recommendations