Advertisement

Fungal Biorefinery for the Production of Single Cell Oils as Advanced Biofuels

  • Abu Yousuf
  • Baranitharan Ethiraj
  • Maksudur Rahman Khan
  • Domenico Pirozzi
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Biofuel production from edible substrate raises a social conflict because it hikes the food price, occupies the arable land and competes with the food industry. Therefore, microbial oils or single cell oils (SCOs) have attracted the attention as suitable alternative of triglycerides. A variety of microbes have been studied such as microalgae, bacteria, yeast and fungi. A comprehensive study for the functionality of fungi in the purpose of biofuel synthesis is not addressed yet. This chapter describes the biorefinery concept of fungi to biofuels, which includes their culture techniques, culture medium, growth, SCO extraction and transesterification of SCO. It also compares the first-generation to third-generation biofuels.

Keywords

Single cell oils Microbial lipid Substrates for SCO Extraction of SCO SCO to biofuels Industrial production 

References

  1. Adam F, Abert-Vian M, Peltier G, Chemat F (2012) “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process. Bioresour Technol 114:457–465PubMedCrossRefPubMedCentralGoogle Scholar
  2. Adamczak M, Bornscheuer UT, Bednarski W (2009) The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol 111(8):800–813CrossRefGoogle Scholar
  3. Aggelis G, Sourdis J (1997) Prediction of lipid accumulation-degradation in oleaginous micro-organisms growing on vegetable oils. Antonie Van Leeuwenhoek 72(2):159–165PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aggelis G, Ratomahenina R, Arnaud A, Galzy P, Martin-Privat P, Perraud J, Pina M, Graille J (1988) Etude de l'influence des conditions de culture sur la teneur en acide gamma limolénique de souches de Mucor. Oleagineux 43(7):311–317Google Scholar
  5. Ahn WS, Park SJ, Lee SY (2000) Production of Poly (3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coliwith a highly concentrated whey solution. Appl Environ Microbiol 66(8):3624–3627PubMedPubMedCentralCrossRefGoogle Scholar
  6. Akhtar P, Gray J, Asghar A (1998) Synthesis of lipids by certain yeast strains grown on whey permeate. J Food Lipids 5(4):283–297CrossRefGoogle Scholar
  7. Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349CrossRefGoogle Scholar
  8. Alvarez H, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60(4):367–376PubMedCrossRefPubMedCentralGoogle Scholar
  9. Amaretti A, Raimondi S, Sala M, Roncaglia L, De Lucia M, Leonardi A, Rossi M (2010) Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Factories 9(1):1CrossRefGoogle Scholar
  10. Amarni F, Kadi H (2010) Kinetics study of microwave-assisted solvent extraction of oil from olive cake using hexane: comparison with the conventional extraction. Innovative Food Sci Emerg Technol 11(2):322–327CrossRefGoogle Scholar
  11. Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz G (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99(8):3051–3056PubMedCrossRefPubMedCentralGoogle Scholar
  12. Azeem A, Neelagund Y, Rathod V (1999) Biotechnological production of oil: fatty acid composition of microbial oil. Plant Foods Hum Nutr 53(4):381–386PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bednarski W, Leman J, Tomasik J (1986) Utilization of beet molasses and whey for fat biosynthesis by a yeast. Agric Wastes 18(1):19–26CrossRefGoogle Scholar
  14. Beopoulos A, Chardot T, Nicaud J-M (2009) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91(6):692–696PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chatzifragkou A, Fakas S, Galiotou-Panayotou M, Komaitis M, Aggelis G, Papanikolaou S (2010) Commercial sugars as substrates for lipid accumulation in Cunninghamella echinulata and Mortierella isabellina fungi. Eur J Lipid Sci Technol 112(9):1048–1057CrossRefGoogle Scholar
  17. Chemat F, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18(4):813–835PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen X, Li Z, Zhang X, Hu F, Ryu DD, Bao J (2009) Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 159(3):591–604PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manag 51(7):1412–1421CrossRefGoogle Scholar
  20. Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53(8):434–447CrossRefGoogle Scholar
  21. Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42(11):1537–1545CrossRefGoogle Scholar
  22. Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38(4):291–325CrossRefGoogle Scholar
  23. Daniel H-J, Otto R, Binder M, Reuss M, Syldatk C (1999) Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates. Appl Microbiol Biotechnol 51(1):40–45PubMedCrossRefPubMedCentralGoogle Scholar
  24. De Gorter H, Just DR (2010) The social costs and benefits of biofuels: the intersection of environmental, energy and agricultural policy. Appl Econ Perspect Policy 32(1):4–32CrossRefGoogle Scholar
  25. Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33(1):1–18CrossRefGoogle Scholar
  26. Doelle MB, Doelle HW (1990) Sugar-cane molasses fermentation by Zymomonas mobilis. Appl Microbiol Biotechnol 33(1):31–35CrossRefGoogle Scholar
  27. Economou CN, Aggelis G, Pavlou S, Vayenas D (2011a) Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnol Bioeng 108(5):1049–1055PubMedCrossRefPubMedCentralGoogle Scholar
  28. Economou CN, Aggelis G, Pavlou S, Vayenas D (2011b) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102(20):9737–9742PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ellis RJ, Geuns J, Zarnowski R (2002) Fatty acid composition from an epiphytic strain of Fusarium oxysporum associated with algal crusts. Acta Microbiol Pol 51(4):391–394PubMedPubMedCentralGoogle Scholar
  30. Evans CT, Ratledge C (1983) Biochemical activities during lipid accumulation in Candida curvata. Lipids 18(9):630–635PubMedCrossRefPubMedCentralGoogle Scholar
  31. Fakas S, Galiotou-Panayotou M, Papanikolaou S, Komaitis M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzym Microb Technol 40(5):1321–1327CrossRefGoogle Scholar
  32. Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33(4):573–580CrossRefGoogle Scholar
  33. Folch J, Lees M, Sloane-Stanley G (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509PubMedGoogle Scholar
  34. Ganzler K, Salgó A, Valkó K (1986) Microwave extraction: a novel sample preparation method for chromatography. J Chromatogr A 371:299–306CrossRefGoogle Scholar
  35. Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100(21):4919–4930PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hajra AK (1974) On extraction of acyl and alkyl dihydroxyacetone phosphate from incubation mixtures. Lipids 9(8):502–505PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hamelinck CN, Van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle-and long-term. Biomass Bioenergy 28(4):384–410CrossRefGoogle Scholar
  38. Harrison ST (1991) Bacterial cell disruption: a key unit operation in the recovery of intracellular products. Biotechnol Adv 9(2):217–240PubMedCrossRefGoogle Scholar
  39. Hegel PE, Camy S, Destrac P, Condoret J-S (2011) Influence of pretreatments for extraction of lipids from yeast by using supercritical carbon dioxide and ethanol as cosolvent. J Supercrit Fluids 58(1):68–78CrossRefGoogle Scholar
  40. Hemwimon S, Pavasant P, Shotipruk A (2007) Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep Purif Technol 54(1):44–50CrossRefGoogle Scholar
  41. Holdsworth JE, Ratledge C (1991) Triacylglycerol synthesis in the oleaginous yeastCandida curvata D. Lipids 26(2):111–118PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hopkins T (1991) Physical and chemical cell disruption for the recovery of intracellular proteins. Bioprocess Technol 12:57–83PubMedPubMedCentralGoogle Scholar
  43. Hosikian A, Lim S, Halim R, Danquah MK (2010) Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng 2010:1–11CrossRefGoogle Scholar
  44. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639CrossRefPubMedGoogle Scholar
  45. Huang C, Zong M-H, Wu H, Liu Q-P (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100(19):4535–4538PubMedCrossRefPubMedCentralGoogle Scholar
  46. Huang C, Wu H, Liu Q-P, Li Y-Y, Zong M-H (2011) Effects of aldehydes on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. J Agric Food Chem 59(9):4606–4613PubMedCrossRefPubMedCentralGoogle Scholar
  47. Huang C, Chen X-F, Xiong L, Ma L-L (2012a) Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresour Technol 110:711–714PubMedCrossRefPubMedCentralGoogle Scholar
  48. Huang C, Wu H, Li R-F, Zong M-H (2012b) Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. New Biotechnol 29(3):372–378CrossRefGoogle Scholar
  49. Huang C, Wu H, Liu Z-J, Cai J, Lou W-Y, Zong M-H (2012c) Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. Biotechnol Biofuels 5(1):1CrossRefGoogle Scholar
  50. Huang Q, Wang Q, Gong Z, Jin G, Shen H, Xiao S, Xie H, Ye S, Wang J, Zhao ZK (2013) Effects of selected ionic liquids on lipid production by the oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 130:339–344PubMedCrossRefPubMedCentralGoogle Scholar
  51. Huffer JW, Westcott JE, Miller LV, Krebs NF (1998) Microwave method for preparing erythrocytes for measurement of zinc concentration and zinc stable isotope enrichment. Anal Chem 70(11):2218–2220PubMedCrossRefPubMedCentralGoogle Scholar
  52. Jensen SK (2008) Improved Bligh and Dyer extraction procedure. Lipid Technol 20(12):280–281CrossRefGoogle Scholar
  53. Jones J, Manning S, Montoya M, Keller K, Poenie M (2012) Extraction of algal lipids and their analysis by HPLC and mass spectrometry. J Am Oil Chem Soc 89(8):1371–1381Google Scholar
  54. Kamm B, Kamm M, Schmidt M, Hirth T, Schulze M (2006a) Lignocellulose- based chemical products and product family trees. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products, Status quo and future directions, vol 2. Wiley-VCH, Weinheim, pp 97–149Google Scholar
  55. Kamm B, Kamm M, Gruber P (2006b) Biorefinery systems –an overview. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries – industrial processes and products. Status quo and future directions, vol 1. Wiley-VCH, Weinheim, pp 3–40Google Scholar
  56. Khanal SK, Grewell D, Sung S, Van Leeuwen J (2007) Ultrasound applications in wastewater sludge pretreatment: a review. Crit Rev Environ Sci Technol 37(4):277–313CrossRefGoogle Scholar
  57. Khot M, Kamat S, Zinjarde S, Pant A, Chopade B, RaviKumar A (2012) Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb Cell Factories 11(1):1CrossRefGoogle Scholar
  58. Koutinas AA, Wang R, Campbell GM, Webb C (2006) A whole crop biorefinery system: a closed system for the manufacture of non-food-products from cereal. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries-industrial processes and products, status quo and future directions, vol 1. Wiley-VCH, Weinheim, pp 165–191Google Scholar
  59. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6(2):561–565PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kromus S, Kamm B, Kamm M, Fowler P, Narodoslawsky M (2006) The green biorefinery concept – fundamentals and potentials. In: Kamm B, Kamm M, Gruber P (eds) Biorefineries –biobased industrial processes and products. Status quo and future directions, vol 1. Wiley-VCH, Weinheim, pp 253–294Google Scholar
  61. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kumar AK, Vatsyayan P, Goswami P (2010) Production of lipid and fatty acids during growth of Aspergillus terreus on hydrocarbon substrates. Appl Biochem Biotechnol 160(5):1293–1300PubMedCrossRefPubMedCentralGoogle Scholar
  63. Larsson K, Quinn P, Sato K, Tiberg F (2006) Lipids: structure, physical properties and functionality. Oily Press Bridgwater, BridgwaterCrossRefGoogle Scholar
  64. Lechevalier H, Lechevalier M (1988) Chemotaxonomic use of lipids—an overview. Microbial Lipids 1:869–902Google Scholar
  65. Lee SJ, Yoon B-D, Oh H-M (1998) Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnol Tech 12(7):553–556CrossRefGoogle Scholar
  66. Lee AK, Lewis DM, Ashman PJ (2012) Disruption of microalgal cells for the extraction of lipids for biofuels: processes and specific energy requirements. Biomass Bioenergy 46:89–101CrossRefGoogle Scholar
  67. Leung DY, Wu X, Leung M (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095CrossRefGoogle Scholar
  68. Li Y, Zhao ZK, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzym Microb Technol 41(3):312–317CrossRefGoogle Scholar
  69. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756PubMedCrossRefPubMedCentralGoogle Scholar
  70. Li Q, Jiang X, He Y, Li L, Xian M, Yang J (2010) Evaluation of the biocompatibile ionic liquid 1-methyl-3-methylimidazolium dimethylphosphite pretreatment of corn cob for improved saccharification. Appl Microbiol Biotechnol 87(1):117–126PubMedCrossRefPubMedCentralGoogle Scholar
  71. Liang K, Zhang Q, Cong W (2012) Enzyme-assisted aqueous extraction of lipid from microalgae. J Agric Food Chem 60(47):11771–11776CrossRefPubMedGoogle Scholar
  72. Liu B, Zhao ZK (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82(8):775–780CrossRefGoogle Scholar
  73. Liu ZL, Ma M, Song M (2009) Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Gen Genomics 282(3):233–244CrossRefGoogle Scholar
  74. Marcato B, Vianello M (2000) Microwave-assisted extraction by fast sample preparation for the systematic analysis of additives in polyolefins by high-performance liquid chromatography. J Chromatogr A 869(1):285–300PubMedCrossRefPubMedCentralGoogle Scholar
  75. Markham BL, Ong L, Barsi JA, Mendenhall JA, Lencioni DE, Helder DL, Hollaren DM,Morfitt R (2006) Radiometric calibration stability of the EO-1 advanced land imager: 5 years on-orbit, Remote Sensing, International Society for Optics and PhotonicsGoogle Scholar
  76. Martín C, Marcet M, Almazán O, Jönsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol 98(9):1767–1773PubMedCrossRefPubMedCentralGoogle Scholar
  77. Mason T, Lorimer J, Bates D, Zhao Y (1994) Dosimetry in sonochemistry: the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason Sonochem 1(2):S91–S95CrossRefGoogle Scholar
  78. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49(5):1137–1146PubMedPubMedCentralCrossRefGoogle Scholar
  79. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5CrossRefGoogle Scholar
  80. Muller EE, Sheik AR, Wilmes P (2014) Lipid-based biofuel production from wastewater. Curr Opin Biotechnol 30:9–16PubMedCrossRefPubMedCentralGoogle Scholar
  81. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14(2):578–597CrossRefGoogle Scholar
  82. Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539PubMedPubMedCentralCrossRefGoogle Scholar
  83. Palmqvist E, Hahn-Hägerdal B (2000a) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74(1):17–24CrossRefGoogle Scholar
  84. Palmqvist E, Hahn-Hägerdal B (2000b) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33CrossRefGoogle Scholar
  85. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82(1):43–49PubMedCrossRefPubMedCentralGoogle Scholar
  86. Papanikolaou S, Aggelis G (2003) Modeling lipid accumulation and degradation in Yarrowia lipolytica cultivated on industrial fats. Curr Microbiol 46(6):0398–0402CrossRefGoogle Scholar
  87. Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113(8):1031–1051CrossRefGoogle Scholar
  88. Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95(3):287–291PubMedCrossRefPubMedCentralGoogle Scholar
  89. Papanikolaou S, Galiotou-Panayotou M, Chevalot I, Komaitis M, Marc I, Aggelis G (2006) Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr Microbiol 52(2):134–142PubMedCrossRefPubMedCentralGoogle Scholar
  90. Pare J, Matni G, Belanger J, Li K, Rule C, Thibert B, Yaylayan V, Liu Z, Mathé D, Jacquault P (1996) Use of the microwave-assisted process in extraction of fat from meat, dairy, and egg products under atmospheric pressure conditions. J AOAC Int 80(4):928–933Google Scholar
  91. Polakowski T, Bastl R, Stahl U, Lang C (1999) Enhanced sterol-acyl transferase activity promotes sterol accumulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53(1):30–35PubMedCrossRefPubMedCentralGoogle Scholar
  92. Pometto A, Shetty K, Paliyath G, Levin RE (2005) Food biotechnology. CRC Press, Florida, USAGoogle Scholar
  93. Pyle DJ, Garcia RA, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56(11):3933–3939PubMedCrossRefPubMedCentralGoogle Scholar
  94. Ratledge C (1991) Microorganisms for lipids. Acta Biotechnol 11(5):429–438CrossRefGoogle Scholar
  95. Ratledge C (1993) Single cell oils—have they a biotechnological future? Trends Biotechnol 11(7):278–284PubMedCrossRefPubMedCentralGoogle Scholar
  96. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86(11):807–815PubMedCrossRefPubMedCentralGoogle Scholar
  97. Ratledge C, Dawson PSS, Rattray J (1984) Biotechnology for the oils and fats industry. The American Oil Chemists Society, USAGoogle Scholar
  98. Ratledge C, Hopkins S, Gunstone F (2006) Lipids from microbial sources. Modifying lipids for use in food:80–113Google Scholar
  99. Refaat A, El Sheltawy S, Sadek K (2008) Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation. Int J Environ Sci Technol 5(3):315–322CrossRefGoogle Scholar
  100. Rosenberg U, Bogl W (1987) Microwave thawing, drying, and baking in the food industry. Food Technol 41:85Google Scholar
  101. Rumbold K, van Buijsen HJ, Overkamp KM, van Groenestijn JW, Punt PJ, van der Werf MJ (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb Cell Factories 8(1):1CrossRefGoogle Scholar
  102. Santala S, Efimova E, Kivinen V, Larjo A, Aho T, Karp M, Santala V (2011) Improved triacylglycerol production in Acinetobacter baylyi ADP1 by metabolic engineering. Microb Cell Factories 10(1):1CrossRefGoogle Scholar
  103. Sheng J, Vannela R, Rittmann BE (2011) Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. Bioresour Technol 102(2):1697–1703PubMedCrossRefPubMedCentralGoogle Scholar
  104. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559PubMedCrossRefPubMedCentralGoogle Scholar
  105. Subhash GV, Mohan SV (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102(19):9286–9290CrossRefGoogle Scholar
  106. Subramaniam R, Dufreche S, Zappi M, Bajpai R (2010) Microbial lipids from renewable resources: production and characterization. J Ind Microbiol Biotechnol 37(12):1271–1287PubMedCrossRefPubMedCentralGoogle Scholar
  107. Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683PubMedCrossRefPubMedCentralGoogle Scholar
  108. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M (2014) Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass Bioenergy 66:159–167CrossRefGoogle Scholar
  109. Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Shimizu S (2005) Transformation of oil-producing fungus, Mortierella alpina 1S-4, using Zeocin, and application to arachidonic acid production. J Biosci Bioeng 100(6):617–622PubMedCrossRefPubMedCentralGoogle Scholar
  110. Tanisho S, Ishiwata Y (1995) Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. Int J Hydrog Energy 20(7):541–545CrossRefGoogle Scholar
  111. Tsigie YA, Wang C-Y, Truong C-T, Ju Y-H (2011) Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102(19):9216–9222PubMedCrossRefPubMedCentralGoogle Scholar
  112. Vamvakaki AN, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S (2010) Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng Life Sci 10(4):348–360CrossRefGoogle Scholar
  113. Varma A, Podila GK (2005) Biotechnological applications of microbes. IK International Pvt Ltd, New DelhiGoogle Scholar
  114. Vega EZ, Glatz BA, Hammond EG (1988) Optimization of banana juice fermentation for the production of microbial oil. Appl Environ Microbiol 54(3):748–752PubMedPubMedCentralGoogle Scholar
  115. Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, Torres-Martínez S, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48(1):22–27CrossRefGoogle Scholar
  116. Vicente G, Bautista LF, Gutiérrez FJ, Rodríguez R, Martínez V, Rodríguez-Frómeta RA, Ruiz-Vázquez RM, Torres-Martínez S, Garre V (2010) Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuel 24(5):3173–3178CrossRefGoogle Scholar
  117. Wang Z, Zhuge J, Fang H, Prior BA (2001) Glycerol production by microbial fermentation: a review. Biotechnol Adv 19(3):201–223PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol 102(17):7959–7965PubMedCrossRefPubMedCentralGoogle Scholar
  119. Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40(12):3627–3652CrossRefGoogle Scholar
  120. Wee Y-J, Kim J-N, Yun J-S, Ryu H-W (2004) Utilization of sugar molasses for economical L (+)-lactic acid production by batch fermentation of Enterococcus faecalis. Enzym Microb Technol 35(6):568–573CrossRefGoogle Scholar
  121. Weerheim AM, Kolb AM, Sturk A, Nieuwland R (2002) Phospholipid composition of cell-derived microparticles determined by one-dimensional high-performance thin-layer chromatography. Anal Biochem 302(2):191–198PubMedCrossRefPubMedCentralGoogle Scholar
  122. Werpy T, Petersen G (2004) Top Value Added Chemicals from biomass, U.S. Department of Energy, Office of scientific and technical information, No.: DOE/GO-102004-1992, www.osti.gov/bridge.
  123. Wu S, Hu C, Zhao X, Zhao ZK (2010) Production of lipid from N-acetylglucosamine by Cryptococcus curvatus. Eur J Lipid Sci Technol 112(7):727–733CrossRefGoogle Scholar
  124. Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresour Technol 50(1):3–15CrossRefGoogle Scholar
  125. Wynn J, Ratledge C (2006) Microbial production of oils and fats. Food Sci Technol-New York-Marcel Dekker 148:443Google Scholar
  126. Wynn JP, Kendrick A, Hamid AA, Ratledge C (1997) 141 Malic enzyme: A lipogenic enzyme in fungi. Biochem Soc Trans 25(4):S669–S669PubMedCrossRefPubMedCentralGoogle Scholar
  127. Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147(10):2857–2864PubMedCrossRefPubMedCentralGoogle Scholar
  128. Xue F, Zhang X, Luo H, Tan T (2006) A new method for preparing raw material for biodiesel production. Process Biochem 41(7):1699–1702CrossRefGoogle Scholar
  129. Xue F, Miao J, Zhang X, Luo H, Tan T (2008) Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol 99(13):5923–5927PubMedCrossRefPubMedCentralGoogle Scholar
  130. Yang Q, Yang M, Zhang S, Lv W (2005) Treatment of wastewater from a monosodium glutamate manufacturing plant using successive yeast and activated sludge systems. Process Biochem 40(7):2483–2488CrossRefGoogle Scholar
  131. Ykema A, Verbree EC, Kater MM, Smit H (1988) Optimization of lipid production in the oleaginous yeastApiotrichum curvatum in wheypermeate. Appl Microbiol Biotechnol 29(2–3):211–218Google Scholar
  132. Ykema A, Verbree EC, Verwoert II, van der Linden KH, Nijkamp HJJ, Smit H (1990) Lipid production of revertants of Ufa mutants from the oleaginous yeast Apiotrichum curvatum. Appl Microbiol Biotechnol 33(2):176–182CrossRefGoogle Scholar
  133. Yousuf A, Sannino F, Addorisio V, Pirozzi D (2010) Microbial conversion of olive oil mill wastewaters into lipids suitable for biodiesel production. J Agric Food Chem 58(15):8630–8635PubMedCrossRefPubMedCentralGoogle Scholar
  134. Yousuf A, Hoque M, Jahan MA, Pirozzi D (2014) Technology and engineering of biodiesel production: a comparative study between microalgae and other non-photosynthetic oleaginous microbes. Int Rev Biophys Chem (IREBIC) 5(5):125–129Google Scholar
  135. Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102(10):6134–6140PubMedCrossRefPubMedCentralGoogle Scholar
  136. Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153(7):2013–2025PubMedCrossRefPubMedCentralGoogle Scholar
  137. Zhang G, French WT, Hernandez R, Hall J, Sparks D, Holmes WE (2011) Microbial lipid production as biodiesel feedstock from N-acetylglucosamine by oleaginous microorganisms. J Chem Technol Biotechnol 86(5):642–650CrossRefGoogle Scholar
  138. Zhao Z (2004) Toward cheaper microbial oil for biodiesel oil. J Chin Biotechnol 25(2):8–11Google Scholar
  139. Zhao X, Kong X, Hua Y, Feng B, Zhao ZK (2008) Medium optimization for lipid production through co-fermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lipid Sci Technol 110(5):405–412CrossRefGoogle Scholar
  140. Zheng Y, Yu X, Zeng J, Chen S (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuels 5(1):50PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhu M, Yu L-J, Wu Y-X (2003) An inexpensive medium for production of arachidonic acid by Mortierella alpina. J Ind Microbiol Biotechnol 30(1):75–79PubMedCrossRefPubMedCentralGoogle Scholar
  142. Zhu L, Zong M, Wu H (2008) Efficient lipid production with Trichosporonfermentans and its use for biodiesel preparation. Bioresour Technol 99(16):7881–7885PubMedCrossRefPubMedCentralGoogle Scholar
  143. Zoebelin H (1996) (Ed) Dictionary of Renewable Resources, WILEY-VCH, Weinheim, GermanyGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abu Yousuf
    • 1
  • Baranitharan Ethiraj
    • 2
  • Maksudur Rahman Khan
    • 3
  • Domenico Pirozzi
    • 4
  1. 1.Department of Chemical Engineering & Polymer ScienceShahjalal University of Science and TechnologySylhetBangladesh
  2. 2.Department of BiotechnologyBannari Amman Institute of TechnologySathyamangalam, Erode DistrictIndia
  3. 3.Faculty of Chemical and Natural Resources EngineeringUniversity Malaysia PahangGambangMalaysia
  4. 4.Department of Chemical Engineering, Materials and Industrial Production, University Naples Federico IINaplesItaly

Personalised recommendations