Advertisement

Fungal Enzymes Applied to Industrial Processes for Bioethanol Production

  • Cecilia Laluce
  • Longinus I. Igbojionu
  • Kelly J. Dussán
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

The main biofuels are biodiesel obtained from natural oils and ethanol obtained by fermentation of agricultural residues. Residues of lignocellulosic materials are found worldwide and are one of the most promising renewable substrate for the production of bioenergy. However, the conversion of biomass into biofuel, using fast, cheap and efficient methodologies is the major challenge of biofuel production. The present work intends to cover the composition of lignocellulosic substrates, fungal enzymes, synergism between cellulases and industrial integrated processes for biomass utilization. Concerning applications, fungal enzymes are used in pulp and paper industry, textile, bioethanol, wine and brewery manufacturing, food processing, and animal feed.

Keywords

Lignocellulose substrates Fungi enzymes Synergy between cellulases Integrated processes Biofuel production 

Notes

Acknowledgment

First, we would like to thank Dr. Sachin Kumar for encouraging us to prepare this book chapter. We are also grateful to FAPESP (Foundation for Research Support of the State of São Paulo) for financial aids granted to our research group over the years, as well as the scholarships awarded to the students by CNPq (National Council for Scientific and Technological Development, Brasília), and CAPES (Coordination of Improvement of Higher Education Personnel).

References

  1. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005 CrossRefPubMedGoogle Scholar
  2. Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M (2000) Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 25:184–192. https://doi.org/10.1038/sj.jim.7000054 CrossRefGoogle Scholar
  3. Ali SS, Nugent B, Mullins E, Doohan FM (2016) Mini-review, fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Express 6:1–13. https://doi.org/10.1186/s13568-016-0185-0 CrossRefGoogle Scholar
  4. Amin FR, Khalid H, Zhang H, Rahman S, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7:72. https://doi.org/10.1186/s13568-017-0375-4 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amiri H, Karimi K (2015) Improvement of acetone, butanol, and ethanol production from woody biomass by using organosolv pretreatment. Bioprocess Biosyst Eng 381:959–1972. https://doi.org/10.1007/s00449-015-1437-0 CrossRefGoogle Scholar
  6. Andersen N, Johansen KS, Michelsen M, Stenby EH, Krogh KBRM, Olsson L (2008) Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme Microb Technol 42:362–370. https://doi.org/10.1016/j.enzmictec.2007.11.018 CrossRefGoogle Scholar
  7. Antonov E, Ivan Schlembach I, Regestein L, Miriam A, Rosenbaum MA, Jochen Büchs J (2017) Process relevant screening of cellulolytic organisms for consolidated bioprocessing. Biotechnol Biofuels 10:106. https://doi.org/10.1186/s13068-017-0790-4 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Aro N, Ilmén M, Saloheimo A, Penttilä M (2003) ACEI of Trichoderma reesei is a repressor of Cellulase and Xylanase expression. Appl Environ Microbiol 69:56–65. https://doi.org/10.1128/AEM.69.1.56-65.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ask M, Olofsson K, Di Felice T, Ruohonen L, Penttilä M, Lidén G, Olsson L (2012) Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 47:1452–1459. doi.org/10.1016/j.procbio.2012.05.016 CrossRefGoogle Scholar
  10. Badhan A, Wang Y, Gruninger R, Patton D, Powlowski J, Tsang A, Mcallister T (2014) Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases. BMC Biotechnol 14:1–14. https://doi.org/10.1186/1472-6750-14-31 CrossRefGoogle Scholar
  11. Bae J, Kouichi K, Ueda M (2015) Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Appl Environ Microbiol 81:58–56. https://doi.org/10.1128/AEM.02864-14 CrossRefGoogle Scholar
  12. Barakat A, Chuetor S, Monlau F, Solhy A, Rouau X (2014) Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: impact on energy and yield of the enzymatic hydrolysis. Appl Energy 113:97–105. https://doi.org/10.1016/j.apenergy.2013.07.015 CrossRefGoogle Scholar
  13. Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557. https://doi.org/10.1016/S0959-440X(98)80143-7 CrossRefPubMedGoogle Scholar
  14. Beldam G, Voragem AGJ, Romboust FM, Pilnk W (1988) Synergisms in cellulose hydrolysis by exoglucanase and exoglucanase purified form Trichoderma viridie. Biotechnol Bioeng 31:173–178. https://doi.org/10.1002/bit.260310211 CrossRefGoogle Scholar
  15. Bertran MS, Dale BC (1986) Determination of cellulose accessibility by differential scanning calorimetry. J Appl Polym Sci 32:4241–4253. https://doi.org/10.1002/app.1986.070320335 CrossRefGoogle Scholar
  16. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F (2004) Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem 39:1533–1542. https://doi.org/10.1016/S0032-9592(03)00285-1 CrossRefGoogle Scholar
  17. Chandra RP, R Bura P, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of Lignocellulosics? Adv Biochem Engin/Biotechnol 108:67–93. https://doi.org/10.1007/10_2007_064 CrossRefGoogle Scholar
  18. Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 84:5–37. https://doi.org/10.1385/ABAB:84-86:1-9:5 CrossRefPubMedGoogle Scholar
  19. Chundawat SP, Venkatesh B, Dale BE (2007) Effect of particle size based separation of milled corn Stover on AFEX pretreatment and enzymatic digestibility. Biotechnol Bioeng 96:219–231. https://doi.org/10.1002/bit.21132 CrossRefPubMedGoogle Scholar
  20. Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose- structure and characterization cellulose. Cellul Chem Technol 45:13–12. https://doi.org/10.12691/nnr-4-3-1 CrossRefGoogle Scholar
  21. Cooper GM (2015, preprinting) The cell: a molecular approach, 2nd edn. Sinauer Associates, Inc., Publishers. ISBN-13: 978-0878931064Google Scholar
  22. Dahnum D, Tasum SO, Triwahyuni E, Nurdin M, Abimanyu H (2015) Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia 68:107–116. doi.org/10.1016/j.procbio.2012.05.016 CrossRefGoogle Scholar
  23. de Cassia Pereira J, Paganini MN, Rodrigues A, Brito de Oliveira T, Boscolo M, da Silva R, Gomes E, Bocchini Martins DA (2015) Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118:928–939. https://doi.org/10.1111/jam.12757 CrossRefPubMedGoogle Scholar
  24. Demain AL, Newcomb M, Wu JD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154. https://doi.org/10.1128/MMBR.69.1.124-154.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65. https://doi.org/10.1007/10__070 CrossRefPubMedGoogle Scholar
  26. Gao Y, Xu J, Yuan Z, Zhang Y, Liang C, Liu Y (2014) Ethanol production from high solids loading of alkali-pretreated sugarcane bagasse with an SSF process. Bioresources 9:3466–3479. https://doi.org/10.15376/biores.9.2.3466-3479 CrossRefGoogle Scholar
  27. Gikonyo B (ed) (2015) Fuel production from non-food biomass corn Stover. Apple Academic Press Publishing, Oakville, p 157Google Scholar
  28. Goldbeck R, Andrade CCP, Pereira GAG, Maugeri Filho F (2012) Screening and identification of cellulase producing yeast-like microorganisms from Brazilian biomes. Afr J Biotechnol 11:11595–11603. https://doi.org/10.5897//AJB12.422 CrossRefGoogle Scholar
  29. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235. ISSN 1330-9862Google Scholar
  30. Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of Cell Wall model studies. Crop Sci 45:820–831. https://doi.org/10.2135/cropsci2004.0191 CrossRefGoogle Scholar
  31. Gupta PK, Uniyal V, Naithan S (2013) Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive. Carbohydr Polym 94:843–849. https://doi.org/10.1016/j.carbpol.2013.02.012 CrossRefPubMedGoogle Scholar
  32. Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294. https://doi.org/10.1016/j.procbio.2012.05.004 CrossRefGoogle Scholar
  33. Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28, 384–410. https://doi.org/10.1016/j.biombioe.2004.09.002.CrossRefGoogle Scholar
  34. Hendriks A, Zeeman G (2009) Pretreatment to enhance the digestibility of lignocellulosic biomass. Bioresour Technol Essex, 100:10–18. 10-8. https://doi.org/10.1016/j.biortech.2008.05.027 CrossRefPubMedGoogle Scholar
  35. Himmel ME, Ding S, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. https://doi.org/10.1126/science.1137016 CrossRefPubMedGoogle Scholar
  36. Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T (1997) Synergistic action of exo-type cellulases in the hydrolysis of cellulose with different crystallite. J Ferment Bioeng 84:300–306. https://doi.org/10.1016/S0922-338X(97)89248-3 CrossRefGoogle Scholar
  37. Ibeto CN, Oloefule AU, Agbo KE (2011) Global overview of biomass potentials for bioethanol production; a renewable alternative fuel. Trends Appl Sci Res 6:410–425. https://doi.org/10.3923/tasr.2011.410.425 CrossRefGoogle Scholar
  38. Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bio-organosolve retreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280. https://doi.org/10.1016/S0168-1656(03)00123-8 CrossRefPubMedGoogle Scholar
  39. Jouzani GS, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res J 5:152–195. https://doi.org/10.3389/fchem.2014.00066 CrossRefGoogle Scholar
  40. Kang L, Wang W, Lee YY (2010) Bioconversion of Kraft paper mill sludge’s to ethanol by SSF and SSCF. Appl Biochem Biotechnol 161:53–66. https://doi.org/10.1007/s12010-009-8893-4 CrossRefPubMedGoogle Scholar
  41. Khare SK, Pandey A, Larroche C (2015) Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem Eng J 102:38–44. https://doi.org/10.1016/j.bej.2015.02.033 CrossRefGoogle Scholar
  42. Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn Stover by aqueous ammonia. Bioresour Technol 90:39–47. https://doi.org/10.1385/ABAB:124:1-3:1119 CrossRefPubMedGoogle Scholar
  43. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley-VCH Verlag GmbH publishing, Weinheim, Germany.Google Scholar
  44. Koppram R, Nielsen F, Alber E, Olsson L (2013) Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuels 6:1–10. https://doi.org/10.1186/1754-6834-6-2 CrossRefGoogle Scholar
  45. Krishna SH, Reddy TJ, Chowdary GV (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol 77:193–196. https://doi.org/10.1016/S0960-8524(00)00151-6 CrossRefGoogle Scholar
  46. Kumar R, Wyman CE (2009) Effects of cellulose and xylanase enzymes on the destruction of solids from pretreated of poplar by leading technologies. Biotechnol Prog 25:301–314. https://doi.org/10.1002/btpr.102 CrossRefGoogle Scholar
  47. Laluce C, Schenberg ACG, Gallardo JCM, Coradello LFC, Pombeiro-Sponchiado SR (2012) Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol, a review. Appl Biochem Biotechnol 166:1908–1926. https://doi.org/10.1007/s12010-012-9619-6 CrossRefPubMedGoogle Scholar
  48. Lee HV, Hamid SBA, Zain SK (2014) Review Article. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. GFSCI World From lignin-derived aromatic compounds to novel Bio-based polymers. J, pp 20. https://doi.org/10.1155/2014/631013 Google Scholar
  49. Lopes ML, Paulillo SCL, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, Bernardino CD, de Amorim NHB, de Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47S:64–76. https://doi.org/10.1016/j.bjm.2016.10.003 CrossRefGoogle Scholar
  50. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323. https://doi.org/10.1126/science.251.4999.1318 CrossRefPubMedGoogle Scholar
  51. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: and update. Curr Opin Biotechnol 16:577–583. https://doi.org/10.1016/j.copbio.2005.08.009 CrossRefPubMedGoogle Scholar
  52. Mansfield DS, Mooney C, Saddler JN (1999) Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 15:804–816. https://doi.org/10.1021/bp9900864View/savecitation CrossRefPubMedGoogle Scholar
  53. Mathews CK, van Holde KE, Kevin G, Ahern KG (1999) Biochemistry, 3rd edn. Prentice Hall Publisher, New Jersey, USA. ISBN 10: 0805330666/ISBN 13: 9780805330663Google Scholar
  54. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120. https://doi.org/10.1007/10_2007_066 CrossRefPubMedGoogle Scholar
  55. Miranda I, Masiero MO, Zamai T, Capella M, Laluce C (2016) Improved pretreatments applied to the sugarcane bagasse and release of lignin and hemicellulose from the cellulose-enriched fractions by sulfuric acid hydrolysis. J Chem Technol Biotechnol 91:476–482. https://doi.org/10.1002/jctb.4601View/savecitation CrossRefGoogle Scholar
  56. Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichse G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974. https://doi.org/10.1002/mame.200400132 CrossRefGoogle Scholar
  57. Moreno AD, Tomás-Pejó E, Ibarra D, Ballesteros M, Olsson L (2013a) In situ laccase treatment enhances the fermentability of steam-exploded wheat straw in SSCF processes at high dry matter consistencies. Bioresour Technol 143:337–343. https://doi.org/10.1016/j.biortech.2013.06.011 CrossRefPubMedGoogle Scholar
  58. Moreno AD, Tomás-Pejó E, Ibarra D, Ballesteros M, Olsson L (2013b) Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: effect of laccase supplementation. Biotechnol Biofuels 6:160. https://doi.org/10.1186/1754-6834-6-160 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan MC, Quenneville G, Tsang A (2012) A molecular phylogeny of thermophilic fungi. Fungal Biol 116:489–502. https://doi.org/10.1016/j.funbio.2012.01.010 CrossRefPubMedGoogle Scholar
  60. Morrison D, van Dik JS, Pletschke BI (2011) The effect of alcohols, lignin and phenolic compounds of the enzyme activity of Clostridium cellulovarans Xyna. Bioresources 6:3132–3141. https://doi.org/10.1007/s13205-011-0011-y CrossRefGoogle Scholar
  61. Mosier N, Wyman CE, Dale BE, Elander R, Lee YY, Holtzapple MT, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. https://doi.org/10.1016/j.biortech.2004.06.025 CrossRefPubMedGoogle Scholar
  62. Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignin obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105:871–879. https://doi.org/10.1002/bit.22626 CrossRefPubMedGoogle Scholar
  63. Nitayavardhana S, Khanal SK (2010) Innovative biorefinery concept for sugar-based ethanol industries: production of protein-rich fungal biomass on vinasse as an aquaculture feed ingredient. Bioresour Technol 101:9078–9085. https://doi.org/10.1016/j.biortech.2010.07.048 CrossRefPubMedGoogle Scholar
  64. Öhgren K, Bura R, Lesnicki G, Saddler J, Zacchi G (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn Stover. Process Biochem 42:834–839. https://doi.org/10.1016/j.procbio.2007.02.003 CrossRefGoogle Scholar
  65. Ojeda K, Sánchez E, El-Halwagi M, Kafarov V (2011) Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: comparison of SHF, SSF and SSCF pathways. Chem Eng J 176/177:195–201. https://doi.org/10.1016/j.cej.2011.06.083 CrossRefGoogle Scholar
  66. Olofsson K, Bertilsson M, Liden G (2008) A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:1–14. https://doi.org/10.1186/1754-6834-1-7 CrossRefGoogle Scholar
  67. Olofsson K, Palmqvist B, Lidén G (2010a) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol Biofuels 3:1–17. https://doi.org/10.1186/1754-6834-3-17 CrossRefGoogle Scholar
  68. Olofsson K, Wiman M, Lidén G (2010b) Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. J Biotechnol 145:168–175. https://doi.org/10.1016/j.jbiotec.2009.11.001 CrossRefPubMedGoogle Scholar
  69. Osiewacz HD (2002) Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev 1:425–442. https://doi.org/10.1016/S1568-1637(02)00010-7 CrossRefPubMedGoogle Scholar
  70. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 23:1–10. https://doi.org/10.1186/1754-6834-3-10 CrossRefGoogle Scholar
  71. Patel MA, Ou MS, Ingram LO, Shanmugam KT (2005) Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnol Prog 21:1453CrossRefPubMedGoogle Scholar
  72. Rasmussen M, Kambam Y, Khanal SK, Pometto AL, van Leeuwen J (2007) Thin stillage treatment from dry-grind ethanol plants with fungi. ASABE Annual International Meeting of American Society of Agricultural and Biological Engineers, June 17–20, Minneapolis, MN, USAGoogle Scholar
  73. Samejima M, Sugiyama J, Igarashi K, Eriksson K-E L (1997) Enzymatic hydrolysis of bacterial cellulose. Carbohydr Res 305:281–288. https://doi.org/10.1016/S0008-6215(97)10034 CrossRefGoogle Scholar
  74. Sanderson K (2006) US biofuels: a field in ferment. Nature 444:673–676. https://doi.org/10.1038/444673a CrossRefPubMedGoogle Scholar
  75. Saritha M, Arora A, Lata (2012) Biological pretreatment of Lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52:122–130. https://doi.org/10.1007/s12088-011-0199-x CrossRefPubMedGoogle Scholar
  76. Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32:422–430. https://doi.org/10.1016/j.biombioe.2007.10.014 CrossRefGoogle Scholar
  77. Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649. https://doi.org/10.1007/s002530100710 CrossRefPubMedGoogle Scholar
  78. Söderström JM, Galbe M, Zacchi G (2005) Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production. J Wood Chem Technol 25:187–202. https://doi.org/10.1080/02773810500191807 CrossRefGoogle Scholar
  79. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7 CrossRefPubMedGoogle Scholar
  80. Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167. https://doi.org/10.1016/S0167-7799(97)01032-9 CrossRefGoogle Scholar
  81. Teixeira LC, Linden JC, Schroeder HA (1999) Optimizing per- acetic acid pretreatment conditions for improved simultaneous saccharification and co-fermentation (SSCF) of sugar cane bagasse to ethanol fuel. Renew Energy 16:1070–1073. https://doi.org/10.1016/S0960-1481(98)00373-5 CrossRefGoogle Scholar
  82. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100:1122–1131. https://doi.org/10.1002/bit.21849 CrossRefPubMedGoogle Scholar
  83. U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and. Bioproducts Industry. R.D. Perlack and B.J. Stokes (Leads), ORNL/TM-2011/224. Oak Ridge National. Laboratory, Oak Ridge, TN. 227p. https://www1.eere.energy.gov/bioenergy/pdfs/billion_ton_update.pdf
  84. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002 CrossRefPubMedGoogle Scholar
  85. Walker LP, Wilson DB (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresour Technol 36:3–14. https://doi.org/10.1016/0960-8524(91)90095-2 CrossRefGoogle Scholar
  86. Walton JD, Scott-craig JS, Melissa SB (2016) A-xylosidase enhanced conversion of plant biomass into fermentable sugars. United States Patent 9404136Google Scholar
  87. Wang R, Unrean P, Franzen CJ (2016a) Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production. Biotechnol Biofuels 9:88. https://doi.org/10.1186/s13068-016-0500-7 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wang X, Taylor S, Wang Y (2016b) Improvement of radio frequency (RF) heating-assisted alkaline pretreatment on four categories of lignocellulosic biomass. Bioprocess Biosyst Eng 39:1539–1551. https://doi.org/10.1007/s00449-016-1629-2 CrossRefPubMedGoogle Scholar
  89. Wei H, Xu Q, Taylor LE, Baker JO, Tucker MP, Ding S (2009) Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol 20:330–333. https://doi.org/10.1016/j.copbio.2009.05.008 CrossRefPubMedGoogle Scholar
  90. Wi SG, Cho EJ, Lee D, Lee SJ, Lee YJ, Bae H (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels 8:228. https://doi.org/10.1186/s13068-015-0419-4 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299. https://doi.org/10.1016/j.copbio.2009.05.007 CrossRefPubMedGoogle Scholar
  92. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF, SHF, and identification of bottlenecks. Biotechnol Prog 19:1109–1117. https://doi.org/10.1021/bp0340180 CrossRefPubMedGoogle Scholar
  93. Wood MT, McCrae IS, Mahalingeshwara K (1989) The mechanism of fungal cellulase action synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem J 260:37–43CrossRefPubMedPubMedCentralGoogle Scholar
  94. Woodward J (1991) Synergism in cellulase systems. Bioresour Technol 36:67–75. https://doi.org/10.1016/0960-8524(91)90100-X. Get rights and contentCrossRefGoogle Scholar
  95. Wyman CE, Spindler DD, Grohmann K (1992) Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass Bioenergy 3:301–307. https://doi.org/10.1016/0961-9534(92)90001-7 CrossRefGoogle Scholar
  96. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371. https://doi.org/10.1016/j.copbio.2009.05.006 CrossRefPubMedGoogle Scholar
  97. Yang B, Dai Z, Ding S, Wyman CE (2011) Review: enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–450. https://doi.org/10.4155/bfs.11.116 CrossRefGoogle Scholar
  98. Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplex cellulase systems. Biotechnol Bioeng 30:797–824. https://doi.org/10.1002/bit.20282 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cecilia Laluce
    • 1
  • Longinus I. Igbojionu
    • 1
  • Kelly J. Dussán
    • 2
  1. 1.IPBEN - Bioenergy Research Institute, Institute of Chemistry, São Paulo State University - UNESPAraraquaraBrazil
  2. 2.State University (Unesp), Institute of Chemistry, Department of Biochemistry and Technological ChemistryAraraquaraBrazil

Personalised recommendations