Advertisement

Production of Biofuels from Biomass by Fungi

  • Gail Joseph
  • Lijun Wang
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Fungal whole-cell biocatalysts have been used for the pre-treatment of lignocellulosic biomass, lignocellulosic ethanol fermentation, and enzymatic biodiesel production. Fungal whole cells or enzymes bound to whole-cell membrane have significantly reduced the production costs of biocatalysts while also increasing the reusability of biocatalysts. Various strategies based on the advances in genomics and genetic engineering have been developed to improve the biocatalysis efficiency. Genetic engineering of the fungal cells and enzymes via directed evolution has significantly increased the yields and productivity of biofuels in biological processes. Future research on the use of fungal whole-cell biocatalysts can lead to a more sustainable production of biofuels, biodiesel, and other value-added bioproducts.

Notes

Acknowledgments

This publication was made possible by Grant Number NC.X2013-38821-21141 and NC.X-294-5-15-130-1 from the US Department of Agriculture (USDA-NIFA). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Food and Agriculture.

References

  1. Aarthy M, Saravanan P, Gowthaman MK, Rose C, Kamini NR (2014) Enzymatic transesterification for production of biodiesel using yeast lipases: an overview. Chem Eng Res Des 92(8):1591–1601CrossRefGoogle Scholar
  2. Aguieiras ECG, Cavalcanti-Oliveira ED, de Castro AM, Langone MAP, Freire DMG (2014) Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: Use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 135:315–321CrossRefGoogle Scholar
  3. Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG (2015) Current status and new developments of biodiesel production using fungal lipases. Fuel 159:52–67CrossRefGoogle Scholar
  4. Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Biorefin 1(1):57–66CrossRefGoogle Scholar
  5. Amore A, Faraco V (2012) Potential of fungi as category I consolidated BioProcessing organisms for cellulosic ethanol production. Renew Sust Energ Rev 16(5):3286–3301CrossRefGoogle Scholar
  6. Anasontzis GE, Zerva A, Stathopoulou PM, Haralampidis K, Diallinas G, Karagouni AD, Hatzinikolaou DG (2011) Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J Biotechnol 152(1):16–23PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anderson WF, Akin DE (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35(5):355–366PubMedCrossRefPubMedCentralGoogle Scholar
  8. Asial I, Cheng YX, Engman H, Dollhopf M, Wu B, Nordlund P, Cornvik T (2013) Engineering protein thermostability using a generic activity-independent biophysical screen inside the cell. Nat Commun 4:2901PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bajaj A, Lohan P, Jha PN, Mehrotra R (2010) Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym 62(1):9–14CrossRefGoogle Scholar
  10. Ban K, Kaieda M, Matsumoto T, Kondo A, Fukuda H (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8(1):39–43PubMedCrossRefPubMedCentralGoogle Scholar
  11. Ban K, Hama S, Nishizuka K, Kaieda M, Matsumoto T, Kondo A, Noda H, Fukuda H (2002) Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J Mol Catal B Enzym 17(3–5):157–165CrossRefGoogle Scholar
  12. Bari MN, Alam MZ, Muyibi SA, Jamal P (2009) Improvement of production of citric acid from oil palm empty fruit bunches: optimization of media by statistical experimental designs. Bioresour Technol 100(12):3113–3120PubMedCrossRefPubMedCentralGoogle Scholar
  13. Barrington S, Kim JS, Wang L, Kim J-W (2009) Optimization of citric acid production by Aspergillus niger NRRL 567 grown in a column bioreactor. Korean J Chem Eng 26(2):422–427CrossRefGoogle Scholar
  14. Betiku E, Emeko HA, Solomon BO (2016) Fermentation parameter optimization of microbial oxalic acid production from cashew apple juice. Heliyon 2(2):e00082PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194PubMedCrossRefGoogle Scholar
  16. Brijwani K, Vadlani PV, Hohn KL, Maier DE (2011) Experimental and theoretical analysis of a novel deep-bed solid-state bioreactor for cellulolytic enzymes production. Biochem Eng J 58:110–123CrossRefGoogle Scholar
  17. Canet A, Dolors Benaiges M, Valero F (2014) Biodiesel synthesis in a solvent-free system by recombinant Rhizopus oryzae lipase. Study of the catalytic reaction progress. J Am Oil Chem Soc 91(9):1499–1506CrossRefGoogle Scholar
  18. Cesarini S, Diaz P, Nielsen PM (2013) Exploring a new, soluble lipase for FAMEs production in water-containing systems using crude soybean oil as a feedstock. Process Biochem 48(3):484–487CrossRefGoogle Scholar
  19. Chakiath C, Lyons MJ, Kozak RE, Laufer CS (2009) Thermal stabilization of Erwinia chrysanthemi pectin Methylesterase a for application in a sugar beet pulp biorefinery. Appl Environ Microbiol 75(23):7343PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen H (2013) Modern solid state fermentation. Springer, NetherlandsCrossRefGoogle Scholar
  21. Chen H-Z, Xu J, Li Z-H (2005) Temperature control at different bed depths in a novel solid-state fermentation system with two dynamic changes of air. Biochem Eng J 23(2):117–122CrossRefGoogle Scholar
  22. Chen X, Du W, Liu D (2008) Effect of several factors on soluble lipase-mediated biodiesel preparation in the biphasic aqueous-oil systems. World J Microbiol Biotechnol 24(10):2097–2102CrossRefGoogle Scholar
  23. Cobb RE, Si T, Zhao H (2012) Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol 16(3–4):285–291PubMedPubMedCentralCrossRefGoogle Scholar
  24. Contesini FJ, Lopes DB, Macedo GA, Nascimento M d G, Carvalho P d O (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67(3–4):163–171CrossRefGoogle Scholar
  25. Couto SR, Sanromán MA (2005) Application of solid-state fermentation to ligninolytic enzyme production. Biochem Eng J 22(3):211–219CrossRefGoogle Scholar
  26. Couto SR, Sanromán MA (2006) Application of solid-state fermentation to food industry—a review. J Food Eng 76(3):291–302CrossRefGoogle Scholar
  27. Deacon J (2005) Fungal Biology. Blackwell Publishing, OxfordCrossRefGoogle Scholar
  28. Denard CA, Ren H, Zhao H (2015) Improving and repurposing biocatalysts via directed evolution. Curr Opin Chem Biol 25:55–64PubMedCrossRefGoogle Scholar
  29. Dhillon GS, Brar SK, Kaur S, Verma M (2013) Rheological studies during submerged citric acid fermentation by Aspergillus Niger in stirred fermentor using apple pomace ultrafiltration sludge. Food Bioprocess Technol 6(5):1240–1250CrossRefGoogle Scholar
  30. Divne C, Ståhlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei11Edited by K. Nagai. J Mol Biol 275(2):309–325PubMedCrossRefGoogle Scholar
  31. Dizge N, Keskinler B, Tanriseven A (2009) Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene–divinylbenzene copolymer. Biochem Eng J 44(2–3):220–225CrossRefGoogle Scholar
  32. Dogaris I, Gkounta O, Mamma D, Kekos D (2012) Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa. Appl Microbiol Biotechnol 95(2):541–550PubMedCrossRefPubMedCentralGoogle Scholar
  33. Durand A (2003) Bioreactor designs for solid state fermentation. Biochem Eng J 13(2):113–125CrossRefGoogle Scholar
  34. EIA, U. S. E. I. A (2017) EIA U.S. Energy Information Administration, Online: https://www.eia.gov/
  35. Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472(7344):499–503PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fazenda ML, Seviour R, McNeil B, Harvey LM (2008) Submerged culture fermentation of “higher fungi”: the macrofungi. Adv Appl Microbiol 63:33–103PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fernandez-Arrojo L, Guazzaroni ME, Lopez-Cortes N, Beloqui A, Ferrer M (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21(6):725–733PubMedCrossRefPubMedCentralGoogle Scholar
  38. Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62(3–4):197–212CrossRefGoogle Scholar
  39. Ferreira JA, Lennartsson PR, Taherzadeh MJ (2015) Production of ethanol and biomass from thin stillage by Neurospora intermedia: a pilot study for process diversification. Eng Life Sci 15(8):751–759CrossRefGoogle Scholar
  40. Ferreira JA, Mahboubi A, Lennartsson PR, Taherzadeh MJ (2016) Waste biorefineries using filamentous ascomycetes fungi: present status and future prospects. Bioresour Technol 215:334–345PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1315PubMedCrossRefPubMedCentralGoogle Scholar
  42. Forti L, Di Mauro S, Cramarossa MR, Filippucci S, Turchetti B, Buzzini P (2015) Non-conventional yeasts whole cells as efficient biocatalysts for the production of flavors and fragrances. Molecules 20(6):10377–10398PubMedCrossRefGoogle Scholar
  43. Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26(12):668–673PubMedCrossRefPubMedCentralGoogle Scholar
  44. Garcia-Galan C, Barbosa O, Hernandez K, Santos CJ, Rodrigues CR, Fernandez-Lafuente R (2014) Evaluation of styrene-divinylbenzene beads as a support to immobilize lipases. Molecules 19(6):7629PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gibbs PA, Seviour RJ, Schmid F (2000) Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol 20(1):17–48PubMedCrossRefPubMedCentralGoogle Scholar
  46. Haakana H, Miettinen-Oinonen A, Joutsjoki V, Mäntylä A, Suominen P, Vehmaanperä J (2004) Cloning of cellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzym Microb Technol 34(2):159–167CrossRefGoogle Scholar
  47. Haas M, Foglia T, Piazza G (2002) Enzymatic approaches to the production of biodiesel fuels. Lipid Biotechnology, CRC PressGoogle Scholar
  48. Hama S, Yamaji H, Kaieda M, Oda M, Kondo A, Fukuda H (2004) Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochem Eng J 21(2):155–160CrossRefGoogle Scholar
  49. Hamed SAM (2013) In-vitro studies on wood degradation in soil by soft-rot fungi: Aspergillus niger and Penicillium chrysogenum. Int Biodeter Biodegr 78(Supplement C):98–102CrossRefGoogle Scholar
  50. Hardiman E, Gibbs M, Reeves R, Bergquist P (2010) Directed evolution of a thermophilic [beta]-glucosidase for cellulosic bioethanol production. Appl Biochem Biotechnol 161(1–8):301–312PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hatzinikolaou DG, Kourentzi E, Stamatis H, Christakopoulos P, Kolisis FN, Kekos D, Macris BJ (1999) A novel lipolytic activity of Rhodotorula glutinis cells: Production, partial characterization and application in the synthesis of esters. J Biosci Bioeng 88(1):53–56PubMedCrossRefPubMedCentralGoogle Scholar
  52. Huang D, Han S, Han Z, Lin Y (2012) Biodiesel production catalyzed by Rhizomucor miehei lipase-displaying Pichia pastoris whole cells in an isooctane system. Biochem Eng J 63:10–14CrossRefGoogle Scholar
  53. Ishige T, Honda K, Shimizu S (2005) Whole organism biocatalysis. Curr Opin Chem Biol 9(2):174–180PubMedCrossRefPubMedCentralGoogle Scholar
  54. Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103(3):273–280PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jabasingh SA, Nachiyar CV (2011) Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using response surface methodology. Ind Crop Prod 34(3):1564–1571CrossRefGoogle Scholar
  56. Johannes TW, Zhao H (2006) Directed evolution of enzymes and biosynthetic pathways. Curr Opin Microbiol 9(3):261–267PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kaieda M, Samukawa T, Kondo A, Fukuda H (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91(1):12–15PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kaneko S, Yoshitake K, Itakura S, Tanaka H, Enoki A (2005) Relationship between production of hydroxyl radicals and degradation of wood, crystalline cellulose, and a lignin-related compound or accumulation of oxalic acid in cultures of brown-rot fungi. J Wood Sci 51(3):262–269CrossRefGoogle Scholar
  59. Keller FA, Hamilton JE, Nguyen QA (2003) Microbial pretreatment of biomass. Appl Biochem Biotechnol 105(1–3):27–41PubMedCrossRefPubMedCentralGoogle Scholar
  60. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729CrossRefGoogle Scholar
  62. Kumari A, Gupta R (2012) Purification and biochemical characterization of a novel magnesium dependent lipase from Trichosporon asahii MSR 54 and its application in biodiesel production. Asian J Biotechnol 4(2):70–82CrossRefGoogle Scholar
  63. Kuo C-H, Peng L-T, Kan S-C, Liu Y-C, Shieh C-J (2013) Lipase-immobilized biocatalytic membranes for biodiesel production. Bioresour Technol 145:229–232PubMedCrossRefPubMedCentralGoogle Scholar
  64. Leisola M, Turunen O (2007) Protein engineering: opportunities and challenges. Applied Microbiology & Biotechnology 75(6):1225–1232CrossRefGoogle Scholar
  65. Li N, Zong M-H (2010) Lipases from the genus penicillium: production, purification, characterization and applications. J Mol Catal B Enzym 66(1–2):43–54CrossRefGoogle Scholar
  66. Liang J, Luo Y, Zhao H (2011) Synthetic biology: putting synthesis into biology. Wiley Interdiscip Rev Syst Biol Med 3(1):7–20PubMedPubMedCentralCrossRefGoogle Scholar
  67. Liu Y, Xiong Y, Huang W, Jia B (2014) Recurrent paratyphoid fever a co-infected with hepatitis a reactivated chronic hepatitis B. Ann Clin Microbiol Antimicrob 13(1):17PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lutz S (2010) Beyond directed evolution – semi-rational protein engineering and design. Curr Opin Biotechnol 21(6):734–743PubMedPubMedCentralCrossRefGoogle Scholar
  69. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553PubMedCrossRefPubMedCentralGoogle Scholar
  70. Martinez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F, Martínez MJ, Gutiérrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Intern Microbiol 8:195–204Google Scholar
  71. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120PubMedGoogle Scholar
  72. Mitchell DA, Krieger N, BeroviˇC M (2006) Solid-state fermentation bioreactors. Springer, Heidelberg, p 19CrossRefGoogle Scholar
  73. Mosier NS, Hendrickson R, Brewer M, Ho N, Sedlak M, Dreshel R, Welch G, Dien BS, Aden A, Ladisch MR (2005) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125(2):77–97PubMedCrossRefPubMedCentralGoogle Scholar
  74. Nair RB, Lundin M, Brandberg T, Lennartsson PR, Taherzadeh MJ (2015) Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind Crop Prod 69:314–323CrossRefGoogle Scholar
  75. Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y (2009) Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Appl Microbiol Biotechnol 83(4):649–657PubMedCrossRefPubMedCentralGoogle Scholar
  76. Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung M-h, Fukuda H, Kondo A (2006) Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 70(5):564–572PubMedCrossRefPubMedCentralGoogle Scholar
  77. Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110(8):692–700CrossRefGoogle Scholar
  78. Oda M, Kaieda M, Hama S, Yamaji H, Kondo A, Izumoto E, Fukuda H (2005) Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production. Biochem Eng J 23(1):45–51CrossRefGoogle Scholar
  79. Pandey A (2001) Solid-state fermentation in biotechnology: fundamentals and applications. Asiatech Publishers, New DelhiGoogle Scholar
  80. Pandey A, Höfer R, Taherzadeh M, Nampoothiri M, Larroche C (2015) Industrial Biorefineries & White Biotechnology. Elsevier, AmsterdamGoogle Scholar
  81. Raghavarao KSMS, Ranganathan TV, Karanth NG (2003) Some engineering aspects of solid-state fermentation. Biochem Eng J 13(2):127–135CrossRefGoogle Scholar
  82. Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99(10):3975–3981PubMedCrossRefPubMedCentralGoogle Scholar
  83. Ray MJ, Leak DJ, Spanu PD, Murphy RJ (2010) Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production. Biomass Bioenergy 34(8):1257–1262CrossRefGoogle Scholar
  84. RFA (2017) Renewable Fuels Association, Online: http://www.ethanolrfa.org.
  85. Rodrigues RC, Fernandez-Lafuente R (2010) Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. J Mol Catal B Enzym 66(1–2):15–32CrossRefGoogle Scholar
  86. Salehi Jouzani G, Taherzadeh MJ (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Research Journal 2(1):152–195CrossRefGoogle Scholar
  87. Séverac E, Galy O, Turon F, Pantel CA, Condoret J-S, Monsan P, Marty A (2011) Selection of CalB immobilization method to be used in continuous oil transesterification: analysis of the economical impact. Enzym Microb Technol 48(1):61–70CrossRefGoogle Scholar
  88. Sharma RK, Arora DS (2015) Fungal degradation of lignocellulosic residues: an aspect of improved nutritive quality. Crit Rev Microbiol 41(1):52–60PubMedCrossRefPubMedCentralGoogle Scholar
  89. Shiraga S, Kawakami M, Ishiguro M, Ueda M (2005) Enhanced reactivity of Rhizopus oryzae lipase displayed on yeast cell surfaces in organic solvents: potential as a whole-cell biocatalyst in organic solvents. Appl Environ Microbiol 71(8):4335–4338PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shrestha P, Rasmussen M, Khanal SK, Pometto AL 3rd, van Leeuwen JH (2008) Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J Agric Food Chem 56(11):3918–3924PubMedCrossRefPubMedCentralGoogle Scholar
  91. Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46(7):541–549CrossRefGoogle Scholar
  92. Song L, Laguerre S, Dumon C, Bozonnet S, O'Donohue MJ (2010) A high-throughput screening system for the evaluation of biomass-hydrolyzing glycoside hydrolases. Bioresour Technol 101(21):8237–8243PubMedCrossRefPubMedCentralGoogle Scholar
  93. Sreedharan (2016) An overview on fungal cellulases with an industrial perspective. J Nutr Food Sci 06(01)Google Scholar
  94. Srimhan P, Kongnum K, Taweerodjanakarn S, Hongpattarakere T (2011) Selection of lipase producing yeasts for methanol-tolerant biocatalyst as whole cell application for palm-oil transesterification. Enzym Microb Technol 48(3):293–298CrossRefGoogle Scholar
  95. Subramaniyam R, Vimala R (2012) Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat 3:480–486Google Scholar
  96. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11CrossRefPubMedGoogle Scholar
  97. Tamalampudi S, Talukder MR, Hama S, Numata T, Kondo A, Fukuda H (2008) Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39(1):185–189CrossRefGoogle Scholar
  98. Tan KT, Gui MM, Lee KT, Mohamed AR (2010) An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production. J Supercrit Fluids 53(1):82–87CrossRefGoogle Scholar
  99. Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100(6):637–643PubMedCrossRefPubMedCentralGoogle Scholar
  100. Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183CrossRefGoogle Scholar
  101. Villeneuve P, Muderhwa JM, Graille J, Haas MJ (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches. J Mol Catal B Enzym 9(4–6):113–148CrossRefGoogle Scholar
  102. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30(6):1447–1457PubMedCrossRefGoogle Scholar
  103. Wang X-J, Peng Y-J, Zhang L-Q, Li A-N, Li D-C (2012a) Directed evolution and structural prediction of cellobiohydrolase II from the thermophilic fungus Chaetomium thermophilum. Appl Microbiol Biotechnol 95(6):1469–1478PubMedCrossRefGoogle Scholar
  104. Wang M, Si T, Zhao H (2012b) Biocatalyst development by directed evolution. Bioresour Technol 115C:117–125PubMedCentralPubMedGoogle Scholar
  105. Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20(4):412–419PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wu I, Arnold FH (2013) Engineered thermostable fungal Cel6A and Cel7A cellobiohydrolases hydrolyze cellulose efficiently at elevated temperatures. Biotechnol Bioeng 110(7):1874PubMedCrossRefGoogle Scholar
  107. Xiros C, Christakopoulos P (2009) Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2(1):1CrossRefGoogle Scholar
  108. Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Factories 9:32CrossRefGoogle Scholar
  109. Yan J, Li A, Xu Y, Ngo TPN, Phua S, Li Z (2012) Efficient production of biodiesel from waste grease: one-pot esterification and transesterification with tandem lipases. Bioresour Technol 123:332–337PubMedCrossRefPubMedCentralGoogle Scholar
  110. Yan Y, Li X, Wang G, Gui X, Li G, Su F, Wang X, Liu T (2014) Biotechnological preparation of biodiesel and its high-valued derivatives: a review. Appl Energy 113:1614–1631CrossRefGoogle Scholar
  111. Yu H, Guo G, Zhang X, Yan K, Xu C (2009a) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100(21):5170–5175PubMedCrossRefPubMedCentralGoogle Scholar
  112. Yu J, Zhang J, He J, Liu Z, Yu Z (2009b) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100(2):903–908PubMedCrossRefPubMedCentralGoogle Scholar
  113. Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481CrossRefGoogle Scholar
  114. Zhang X, Yu H, Huang H, Liu Y (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 60(3):159–164CrossRefGoogle Scholar
  115. Zhang Z, Qu Y, Zhang X, Lin J (2008) Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3. 1602. Appl Biochem Biotechnol 145(1–3):39–51PubMedCrossRefGoogle Scholar
  116. Zhao X, El-Zahab B, Brosnahan R, Perry J, Wang P (2007) An organic soluble lipase for water-free synthesis of biodiesel. Appl Biochem Biotechnol 143(3):236–243PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Energy and Environmental SystemsNorth Carolina Agricultural and Technical State UniversityGreensboroUSA
  2. 2.Department of Natural Resources and Environmental Design and Department of Chemical, Biological and BioengineeringNorth Carolina Agricultural and Technical State UniversityGreensboroUSA

Personalised recommendations