Advertisement

Production of Single Cell Protein (SCP) from Vinasse

  • Ernesto Acosta Martínez
  • Jéssica Ferreira dos Santos
  • Geiza Suzart Araujo
  • Sílvia Maria Almeida de Souza
  • Rita de Cássia Lacerda Brambilla Rodrigues
  • Eliana Vieira Canettieri
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Sustainable development has been a major focus of twenty-first-century research, and the world economy is undergoing profound changes, including the minimization and use of waste as well as the search for new materials to replace traditional sources derived from fossil fuels.

Research on biofuels has made Brazil a pioneer in the production of ethanol and cachaça from sugarcane. After fermentation and distillation of the wort, vinasse is generated as a by-product.

Vinasse is a toxic effluent that poses a potential hazard to surface and groundwater. This chapter discusses the treatment and application of vinasse, food industry, and waste management: biotechnological production and single cell protein (SCP) production.

Keywords

Vinasse Treatment Application Biotechnological production Single cell protein (SCP) Animal nutrition 

References

  1. ABNT (Associação Brasileira de Normas Técnicas) (2004) Resíduos sólidos - classificação – NBR 10.004 : 2004. Rio de Janeiro: ABNTGoogle Scholar
  2. ANA (Agência Nacional de Águas) (2009) Manual de conservação e reuso de água na agroindústria sucroenergética. Brasilia: ANAGoogle Scholar
  3. Anupama, Ravindra P (2000) Value-added food: single cell protein. Research review paper. Biotechnol Adv 18:459–479. https://doi.org/10.1016/S0734-9750(00)00045-8 CrossRefPubMedGoogle Scholar
  4. Bacha U, Nasir M, Khalique A, Anjum AA, Jabbar MA (2011) Comparative assessment of various agro-industrial wastes for Saccharomyces cerevisiae biomass production and its quality production: as a single cell protein. J Anim Plant Sci 21(4):844–849Google Scholar
  5. Bermúdez-Savón RC, Hoyos-Hernandez JA, Rodríguez-Perez S (2000) Evaluación de la disminución de la carga contaminante de la vinaza de destilería por tratamiento anaerobio. Rev Int Contam Ambie 16(3):103–107Google Scholar
  6. Bernal AP, Santos IFS (2015) Estimativa do potencial energético a partir da digestão anaeróbia da vinhaça na cidade de Araraquara. Rev Bras Energ Renov 4:53–64Google Scholar
  7. BNDES (2008) Bioetanol de cana-de-açúcar: energia para o desenvolvimento sustentável / organização BNDES e CGEE. – Rio de Janeiro: BNDESGoogle Scholar
  8. Borzani W, Schmidell W, Lima UA, Aquarone E (2001) Industrial biotechnology Foundations. Blucher, São PauloGoogle Scholar
  9. Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML, Hammes WP, Harnett J, Huys G, Laulund S, Ouwehand A, Powell IB, Prajapati JB, Seto Y, Ter Schure E, Van Boven A, Vankerckhoven V, Zgoda A, Tuijtelaars S, Hansen EB (2012) Food fermentations: Microorganisms with technological beneficial use. Int J Food Microbiol 154(3):87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030 CrossRefPubMedGoogle Scholar
  10. Braga EAS, Aquino MD, Malveira KQ, Neto JC, Duarte Alexandrino CD (2012) Avaliação da biodegradabilidade das águas de lavagem provenientes da etapa de purificação do biodiesel produzido com óleo extraído das vísceras de tilápia. REGA 9(2):35–45CrossRefGoogle Scholar
  11. Calloway DH (1974) The place of single cell protein in man’s diet. In: Davis P (ed) Single cell protein. Academic Press, New YorkGoogle Scholar
  12. Campos CR, Mesquita VA, Silva CF, Schwan RF (2014) Efficiency of physico-chemical and biological treatments of vinasse and their influence on indigenous microbiota for disposal into the environment. Waste Manag 34:2016–2046. https://doi.org/10.1016/j.wasman.2014.06.006 CrossRefGoogle Scholar
  13. CETESB Companhia Ambiental do Estado de São Paulo (2015) NTC P4.231 stillage – criteria and procedures for agricultural soil application, 3rd edn. CETESB, São PauloGoogle Scholar
  14. Chará JD, Suárez JC (1993) Utilización de vinaza y jugo de caña como fuente energética em patos Pekín alimentados con grano de soya y azolla como fuente proteica. Livestock Res Rural Dev 5(1):1–5Google Scholar
  15. Cheftel JC, Cuq JL, Lorient D (1989) Proteínas alimentarias. Zaragoza: AcribiaGoogle Scholar
  16. Cherubini F (2010) The biorefinery concept: using biomass instead of oil for production energy and chemicals. Energy Convers Manag 51:1412–1421. https://doi.org/10.1016/j.enconman.2010.01.015 CrossRefGoogle Scholar
  17. Chia MA, Lombardi AT, Melao MDGG, Parrish CC (2013) Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquat Toxicol 128(1):171–182. https://doi.org/10.1016/j.aquatox.2012.12.004 CrossRefPubMedGoogle Scholar
  18. Christen P, Domenech F, Páca J, Rvah S (1999) Evaluation of four Candida utilis strains for biomass, acetic acid and ethyl acetate production from ethanol. Bioresour Technol 68(2):193–195. https://doi.org/10.1016/S0960-8524(98)00142-4 CrossRefGoogle Scholar
  19. Christofoletti CA, Escher JP, Correia JE, Marinho JFU, Fontanetti CS (2013) Sugarcane vinasse: environmental implications of its use. Waste Manag 33:2752–2761. https://doi.org/10.1016/j.wasman.2013.09.005 CrossRefPubMedGoogle Scholar
  20. Coca M, Barrocal VM, Lucas S, Gonzáles-Benito G, Gárcia-Cubero MT (2015) Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food Bioprod Process 94:306–312. https://doi.org/10.1016/j.fbp.2014.03.012 CrossRefGoogle Scholar
  21. CONAB – Companhia Nacional de Abastecimento (2017). Acompanhamento da safra brasileira de cana-de-açúcar) SAFRA 2017/18 – Brasília: Conab, 2017; 4(2):1–73. Available at: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/. Accessed 30 Aug 2017
  22. CONAB – Companhia Nacional de Abstecimento (2016) Acompanhamento da safra brasiliera. Cana-de-Açúcar. 3 - safra 2016/17 (3), dez. ISSN: 2318-7921. Available at: http://www.conab.gov.br. Accessed 19 Aug 2017
  23. Corazza RI(1998) Reflexões sobre o papel das políticas ambientais e de ciência e tecnologia na modelagem de opções produtivas mais limpas numa perspectiva evolucionista: um estudo sobre o problema da disposição da vinhaça. Available at: https://www.race.nuca.ie.ufrj.br/eco/trabalhos/mesa3/6.doc. Accessed 13 Oct 2012
  24. Cortez L, Magalhães P, Happy J (1992) Principais subprodutos da indústria canavieira e sua valorização. Rev Bras Energ 2(2):1–17Google Scholar
  25. Crochet SL (1967) Blackstrap molasses is a major economic factor in catle operation at U.S. Sugar Corp. Sugar J 29(8):40–43Google Scholar
  26. Cruz LFLS, Duarte CG, Malheiros TF, Pires EC (2013) Technical, economic and environmental viability analysis of the current vinasse use: ferti-irrigation, concentration and bio-digestion. Rev Bras Cienc Amb 29:111–127Google Scholar
  27. Da Costa DA, de Souza CL, Saliba EOS, Carneiro JC (2015) By-products of sugar cane industry in ruminant nutrition. Int J Adv Agric Res 3:1–9Google Scholar
  28. De Oliveira DWF, França IWL, Felix AKN, Martins JJL, Giro MEA, Melo VMM, Gonçalves LRB (2013a) Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf B: Biointerfaces 101:34–43. https://doi.org/10.1016/j.colsurfb.2012.06.011 CrossRefPubMedGoogle Scholar
  29. De Oliveira MC, Silva DM, Carvalho CAFR, Alves MF, Dias DMB, Martins PC, Bonifácio NP, Souza Júnior MAP (2013b) Effect of including liquid vinasse in the diet of rabbits on growth performance. Rev Bras Zootec 42(4):259–263CrossRefGoogle Scholar
  30. Diaz M, Semprún A, Gualtieri M (2003) Producción de proteína unicelular a partir de desechos de vinaza. Rev Fac Farm 45(2):23–26Google Scholar
  31. Dos Santos RR, Araújo OQF, de Medeiros JF, Chaloub RM (2016) Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse. Bioresour Biotechnol 204:38–34. https://doi.org/10.1016/j.biortech.2015.12.077 CrossRefGoogle Scholar
  32. Ferreira L (2009) Biodegradação de vinhaça proveniente do processo industrial de cana- de- açúcar por fungos. Piracicaba, Tese de Doutorado. Escola Superior de Agricultura “Luis de Queiroz”. Universidade de São PauloGoogle Scholar
  33. Ferreira GM (2012) Concentração de vinhaça a 55 oBrix integrada a usina sucroenergética. Simpósio Internacional e Mostra de Energia Canaviera, 10, Piracicaba, SP, BrasilGoogle Scholar
  34. Ferreira LFR, Aguiar M, Pompeo G, Messias TG, Monteiro RR (2010) Selection of vinasse degrading microorganisms. World J Microbiol Biotechnol 26:1613–1621. https://doi.org/10.1007/s11274-010-0337-3 CrossRefGoogle Scholar
  35. Freire WJ, Cortez LAB (2000) Vinhaça de cana-de-açúcar. Guaíba: AgricultureGoogle Scholar
  36. Gava AJ (1998) Princípios de Tecnologia de Alimentos. São Paulo: NobelGoogle Scholar
  37. Gorni M, Berto DA, Moura MP, Camargo JCM (1987) Utilização da vinhaça concentrada na alimentação de suínos em crescimento e terminação. Bol Ind Anim 44(2):271–279Google Scholar
  38. Hamstra RS, Schoppink PJ (1998) Process for the fractioning and recovery of valuable compounds from vinasse produced in fermentations. US Patent 5,760,078 AGoogle Scholar
  39. Hassuda S (1989) Impactos da infiltração da vinhaça de cana no Aquífero Bauru. São Paulo, Tese de Mestrado. Instituto de Geociências. Universidade de São PauloGoogle Scholar
  40. Hawksworth DL, Sutton BC, Ainsworth GC (1983) Dictionary of the fungi, 7th edn. Commonwealth Mycological Institute Kew, SurreyGoogle Scholar
  41. Hidalgo K, Rodríguez B, Valdivié M, Febles, M (2009) Utilización de la vinaza de destilería como aditivo para pollos en ceba. Rev Cubana Cienc Agrícola 43(3):281–284Google Scholar
  42. ICIDCA (Instituto Cubano de Pesquisa dos Derivados da Cana-de-açúcar) (2000) Manual de los Derivados de la Caña de Azúcar, 3rd ed. ICIDCA, La HabanaGoogle Scholar
  43. Ielchishcheva I, Bozhkov A, Goltvianskiy A, Kurguzova N (2016) The effect of lipid components of corn vinasse on the growth intensity of yeast Rhodosporidium diobovatum IMB Y-5023. Int J Curr Microbiol App Sci 5(10):467–477. https://doi.org/10.20546/ijcmas.2016.510.053 CrossRefGoogle Scholar
  44. Janke J, Leite AF, Batista K, Silva W, Nikolausz M, Nelle M, Stinner W (2016) Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresour Technol 217:10–20. https://doi.org/10.1016/j.biortech.2016.01.110 CrossRefPubMedGoogle Scholar
  45. Jardim WF, Canela MC (2004) Thematic Dossier v.1: Fundamentals of chemical oxidation in wastewater treatment and remediation of soils. Available at: http://lqa.iqm.unicamp.br/cadernos/caderno1.pdf. Accessed 22 Aug 2015
  46. Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Pandey A, Hofer R, Larroche C, Taherzadeh M, Nampoothiri M (eds) Industrial biorefineries and white biotechnology. Elsevier, AmsterdamGoogle Scholar
  47. Kondo K, Saito T, Kajiwara S, Takagi M, Misawa NA (1995) Transformation system for the yeast Candida utilis: use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA. J Bacteriol 177(24):7171–7177. https://doi.org/10.1128/jb.177.24.7171-7177 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lâcorte MCF, Bose MLV, Ripoli TCT (1989) Performance of feedlot with ration based on auto hydrolysed sugar cane bagasse, yeast and vinasse. An ESALQ 46(2):433–452Google Scholar
  49. Laime EMO, Fernandes PD, Oliveira DCS, Freire EA (2011) Technological possibilities for the disposal of vinasse: a review. R Trop: Ci Agr Biol 5(3):16–29Google Scholar
  50. Leme RM, Seabra JEA (2017) Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry. Energy 119:754–766. https://doi.org/10.1016/j.energy.2016.11.029 CrossRefGoogle Scholar
  51. Martelli HL, Souza NO (1978) Obtaining of Candida utilis biomass growing in cane vinasse. Rev Bras Technol 9:157–164Google Scholar
  52. Martinez-Hernandez E, Campbell G, Sakhukhan J (2013) Economic value and environmental impact (EVEI) analysis of biorefinery systems. Chem Eng Res Des 9:1418–1426. https://doi.org/10.1016/j.cherd.2013.02.025 CrossRefGoogle Scholar
  53. Mohsenzadeh A, Zamani A, Taherzadeh MJ (2017) Bioethylene production from ethanol: a review and techno-economical evaluation. Chem Bio Eng Rev 4(2):75–91. https://doi.org/10.1002/cben.201600025 CrossRefGoogle Scholar
  54. Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew Sust Energ Rev 44:888–903. https://doi.org/10.1016/j.rser.2015.01.023 CrossRefGoogle Scholar
  55. Moraes BS, Petersen SO, Zaiat M, Sommer SG, Triolo JM (2017) Reduction in greenhouse gas emissions from vinasse through anaerobic digestion. Appl Energy 189:21–30. https://doi.org/10.1016/j.apenergy.2016.12009 CrossRefGoogle Scholar
  56. Mosier NS, Ladisch MR (2009) Modern biotechnology: connecting innovations in microbiology and biochemistry to engineering fundamentals. Wiley, HobokenCrossRefGoogle Scholar
  57. Nair RB, Taherzadeh MJ (2016) Valorization of sugar-to-ethanol process waste vinasse: a novel biorefinery approach using edible ascomycetes filamentous fungi. Bioresour Technol 221:469–476. https://doi.org/10.1016/j.biortech.2016.09.074 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Nascimento D (2017) Biogás, biometano e o setor sucroenergético. Rev Canavieiros, X, 127:73–75Google Scholar
  59. Nasseri AT, Rasoul-Amini S, Morowvat MH, Ghasemi Y (2011) Single cell protein: production and process. Am J Food Technol 6(2):103–116. https://doi.org/10.3923/ajft.2011.103.116 CrossRefGoogle Scholar
  60. Nitayavardhana S, Khanal SK (2010) Innovative biorefinery concept for sugar-based ethanol industries: production of protein-rich fungal biomass on vinasse as an aquaculture feed ingredient. Bioresour Technol 101:9078–9085. https://doi.org/10.1016/j.biortech.2010.07.048 CrossRefPubMedGoogle Scholar
  61. Nitayavardhana S, Issarapayup K, Pavasant P, Khanal SK (2013) Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresour Technol 133:301–306. https://doi.org/10.1016/j.biortech.2013.01.073 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Omar S, Sabry S (1991) Microbial biomass and protein production from whey. J Islamic World Acad Sci 4(170):172Google Scholar
  63. Otero-Rambla MA, Almazan-Del Olmo OA, Bello-Gil D, Saura-Laria G, Martinez-Valdivieso JA (2010) Potassium removal from distillery slops by Candida utilis propagation. Proc Int Soc Sugar Cane Technol 27:1–7Google Scholar
  64. Paananen H, Lindroos M, Nurmi J, Viljava T (2000) Process for fractioning vinasse. US Patent 6,022,394 AGoogle Scholar
  65. Parajó JC, Santos V, Domínguez H, Vázquez M, Alvarez C (1995) Protein concentrates from yeast cultured in wood hydrolysates. Food Chem 53(2):157–163. https://doi.org/10.1016/0308-8146(95)90782-3 CrossRefGoogle Scholar
  66. Pastore GM, Bicas LJ, Junior MRM (2013) Biotecnologia de Alimentos. Atheneu, São PauloGoogle Scholar
  67. Pedraza GX (1989) Cultivation of Spirulina maxima for protein supplementation. Livest Res Rural Dev 1(1):1–8Google Scholar
  68. Piekarski PRB (1983) Valor nutritivo da vinhaça concentrada e do melaço na alimentação de bovinos em confinamento. Viçosa. 49p. (Mestrado - Universidade Federal de Viçosa)Google Scholar
  69. Pires JF, Ferreira GMR, Reis KC, Schwan RF, Silva CF (2016) Mixed yeasts inocula for simultaneous production of SCP and treatment of vinasse to reduce soil and fresh water pollution. J Environ Manag 182:455–463. https://doi.org/10.1016/j.jenvman.2016.08.006 CrossRefGoogle Scholar
  70. Poveda MMR (2004) Análise econômica e ambiental do processamento da vinhaça com aproveitamento energético. Dissertação de Mestrado, Instituto de Energia e Ambiente, Universidade de São Paulo, São Paulo, BrazilGoogle Scholar
  71. Rasmussen M, Kambam Y, Khanal SK, Pometto AL, van Leeuwen J (Hans) (2007) Thin stillage treatment from dry-grind ethanol plants with fungi. ASABE annual international meeting of American Society of Agricultural and Biological Engineers, June 17–20, Minneapolis, MN, USAGoogle Scholar
  72. Reis CER, Hu B (2017) Vinasse from sugarcane ethanol production: better treatment or better utilization? Front Energy Res 5:1–7. https://doi.org/10.3389/fenrg.2017.00007 CrossRefGoogle Scholar
  73. Robinson T, Singh D, Nigam P (2001) Solid state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289. https://doi.org/10.1007/s002530000565 CrossRefPubMedGoogle Scholar
  74. Rodriguez B, Canela AA, Mora LM, Motta WF, Lezcano P, Euler AC (2011) Mineral composition of torula yeast (Candida utilis), developed from distillery vinasse. Cuban J Agric Sci 45(2):151–153Google Scholar
  75. Sarria P, Preston TR (1992) Reemplazo parcial del jugo de caña con vinaza y uso del grano de soya a cambio de torta en dietas de cerdos de engorde. Livestock Res Rural Develop 4(9). http://www.lrrd.org/lrrd4/1/sarria.htm
  76. Sartori SB, Ferreira LFR, Messias TG, Souza G, Pompeo GB, Monteiro RTR (2015) Pleurotus biomass production on vinasse and its potential use for aquaculture feed. Mycology 6(1):28–34. https://doi.org/10.1080/21501203.2014.988769 CrossRefPubMedGoogle Scholar
  77. Satyawali Y, Balakrishnan M (2008) Wastemater treatment in molasses-based alcohol distilleries for COD and color removal: a review. J Environ Manag 86:481–497. https://doi.org/10.1016/j.jenvman.2006.12.024 CrossRefGoogle Scholar
  78. Schoeninger V, Coelho SRM, Silochi RMQH (2014) Cadeia produtiva da cachaça. Rev Energ Agr 29(4):292–300. https://doi.org/10.17224/EnergAgric.2014v29n4p292-300 CrossRefGoogle Scholar
  79. SEBRAE (Serviço Brasileiro de Apoio às Micro e Pequenas Empresas) (2005) O novo ciclo da Cana: Estudo sobre a competitividade do sistema agroindustrial da cana-de-açúcar e prospecção de novos empreendimentos. Brasília: IEL/NC, SEBRAEGoogle Scholar
  80. Serzedello A (1986) Biomassas microbianas e algumas de suas aplicações. In: Simpósio Anual da Academia de Ciências do Estado de São Paulo (ACIESP), 11, São Paulo Anais..., São Paulo, 51:273–289Google Scholar
  81. Sgarbieri VC (1996) Proteínas em alimentos protéicos; propriedades, degradações, modificações. Sao Paulo: VarelaGoogle Scholar
  82. Silva MAS, Griebeler NP, Borges LC (2007) Use of stillage and its impact on soil properties and groundwater. Rev Bras Eng Agric Environ 11(1):108–114CrossRefGoogle Scholar
  83. Silva CF, Arcuri SL, Campos CR, Vilela DM, Alves JGLF, Schwan RF (2011) Using the residue of spirit production and bio-ethanol for protein production by yeasts. Waste Manag 31:108–114. https://doi.org/10.1016/j.wasman.2010.08.015 CrossRefPubMedGoogle Scholar
  84. Silva MAS, Kliemann HJ, De-Campos AB, Madari BE, Borges JD, Gonçalves JM (2013) Effects of vinasse irrigation on effluent ionic concentration in Brazilian Oxisols. Afr J Agric Res 8(45):5664–5672. https://doi.org/10.5897/AJAR12.1441 CrossRefGoogle Scholar
  85. Silva ALL, Costa JL, Gollo AL, Santos JD, Forneck HR, Biasi LA, Soccol VT, Carvalho JC, Soccol CR (2014) Development of a vinasse culture medium for plant tissue culture. Pak J Bot 46(6):2195–2202Google Scholar
  86. SivaRaman H, Pandle AV, Prablune AA (1984) Growth of Candida utilis on distillery effluent. Biotechnol Lett 6(11):759–762. https://doi.org/10.1007/BF00133070 CrossRefGoogle Scholar
  87. Smith JE (2009) Biotechnology. Cambridge University Press, NewYorkCrossRefGoogle Scholar
  88. SOPRAL (Sociedade de Produtores de Açúcar e Álcool - Brasil) (1986) Avaliação do Vinhoto como Substituto do Óleo Diesel e Outros Usos. Coleção SOPRAL. São Paulo; 10Google Scholar
  89. Souza ELL, Macedo IC (2010) Ethanol and bioelectricity: the sugar cane in the future of the energy matrix. Unica, São PauloGoogle Scholar
  90. Souza RP, Ferrari-Lima AM, Pezoti O, Santana VS, Gimenes ML, Fernandes-Machado NRC (2016) Photodegradation of sugarcane vinasse: evaluation of the effect of vinasse pre-treatment and the crystalline phase of TiO2. Acta Sci Technol 38(2):217–226. https://doi.org/10.4025/actascitechnol.v28i2.27440 CrossRefGoogle Scholar
  91. Srividya AR, Vishnuvarthan VJ, Murugappan M, Dahake PG (2015) Single cell protein: a review. Int J Pharm Res Scholars 2(4):472–485Google Scholar
  92. Suman G, Nupur M, Anuradha S, Pradeep B (2015) Single cell protein production: a review. Int J Curr Microbiol App Sci 4(9):251–262Google Scholar
  93. Sydney EB (2014) Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresour Technol 159:380–386. https://doi.org/10.1016/j.biortech.2014.02.042 CrossRefPubMedGoogle Scholar
  94. Tuse D (1984) Single cell protein: current status and future prospects. Crit Rev Food Sci Nutr 19(4):273–325. https://doi.org/10.1080/10408398409527379 CrossRefPubMedGoogle Scholar
  95. Utami I, Redjeki S, Astuti DH (2016) Biogas production and removal COD-BOD and TSS from wastewater industrial alcohol (vinasse) by modified UASB bioreactor. MATEC Web of Conferences, 58:1–5, BISSTECH 2015. https://doi.org/10.1051/matecconf/20165801005,CrossRefGoogle Scholar
  96. Vadivel R, Minhas PS, Suresh KP, Singh Y, Nageshwar RDVK, Nirmale A (2014) Significance of vinasses waste management in agriculture and environmental quality – review. Afr J Agric Res 9(38):2862–2873. https://doi.org/10.5897/AJAR2014.8819 CrossRefGoogle Scholar
  97. Villas-Boas SG, Esposito E, de Mendonca MM (2003) Bioconversion of apple pomace into a nutritionally enriched substrate by Candida utilis and Pleurotus ostreatus. World J Microbiol Biotechnol 19:461–467. https://doi.org/10.1023/A:1025105506004 CrossRefGoogle Scholar
  98. Yang HH, Thayer DW, Yang SP (1979) Reduction of endogenous nucleic acid in single cell protein. Appl Environ Microbiol 38(1):143–147PubMedPubMedCentralGoogle Scholar
  99. Zhang PJ, Zhao Z-G, Yu S-J, Guan Y-G, Li D, He X (2012) Using strong acid-cation exchange resin to reduce potassium level in molasses vinasses. Desalination 286:210–216. https://doi.org/10.1016/j.desal.2011.11.024 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ernesto Acosta Martínez
    • 1
  • Jéssica Ferreira dos Santos
    • 1
  • Geiza Suzart Araujo
    • 1
  • Sílvia Maria Almeida de Souza
    • 1
  • Rita de Cássia Lacerda Brambilla Rodrigues
    • 2
  • Eliana Vieira Canettieri
    • 3
  1. 1.Department of TechnologyFood Engineering, State University of Feira de SantanaFeira de SantanaBrazil
  2. 2.Department of BiotechnologyEngineering School of Lorena, São Paulo UniversityLorenaBrazil
  3. 3.Department of EnergySão Paulo State UniversityGuaratinguetáBrazil

Personalised recommendations