Mental Models as Cognitive Instruments in the Transformation of Knowledge

  • Jürgen Renn
  • Peter Damerow
  • Matthias Schemmel
  • Christoph Lehner
  • Matteo Valleriani
Part of the Boston Studies in the Philosophy and History of Science book series (BSPS, volume 270)


The chapter is concerned with the epistemic structures of mechanical knowledge in its historical transformations. It describes these structures using the concept of mental models as cognitive instruments, which function as mediators between the realm of practice and experience on the one hand, and conceptual systems on the other. With the help of the concept of mental model, the chapter discusses how mechanical knowledge has emerged from experience in practical contexts and how it was transformed into theoretical and mathematically formalized knowledge systems. Focusing on one particular mental model, which describes the cognitive structure conceptualizing motion as being caused by forces, the chapter then follows its transformations in the long-term history of mechanical thinking. This so-called “motion-implies-force” model is rooted in intuitive, non-written mechanical knowledge. Over the course of history, the model was recruited, complemented, and transformed in the context of the use of mechanical tools and articulated in the work of practitioners dealing with machines, arms, ships, buildings, fortifications, and the like. Eventually, under specific cultural circumstances, this and other mental models were elaborated and integrated into mathematically formalized systems that were used, for example, in the explanation of terrestrial and celestial motions in early modern natural philosophy and the mathematical disciplines of European universities.


Mental model Practical knowledge Reflection Experience Causation Motion Force Aristotelian dynamics Classical physics Impetus Projectile trajectory Galileo Galilei Thomas Harriot Isaac Newton 


  1. Aristotle. 1980. Mechanical problems. In Minor works, 331–411. Transl. W.S. Hett. Cambridge, MA: The Loeb Classical Library.Google Scholar
  2. Arnold, Dieter. 1991. Building in Egypt: Pharaonic stone masonry. New York: Oxford University Press.Google Scholar
  3. Besnard, Philippe. 1989. An introduction to default logic. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  4. Brewka, Gerhard. 1991. Nonmonotonic reasoning: Logical foundations of commonsense. Cambridge: Cambridge University Press.Google Scholar
  5. Charniak, Eugene. 1972. Toward a model of children’s story comprehension. Technical Report 266. Cambridge, MA: Artificial Intelligence Laboratory, Massachusetts Institute of Technology.Google Scholar
  6. Clagett, Marshall. 1959. The science of mechanics in the Middle Ages. Madison: University of Wisconsin Press.Google Scholar
  7. Clement, John. 1983. A conceptual model discussed by Galileo and used intuitively by physics students. In Mental models, ed. Dedre Gentner and Albert L. Stevens, 325–339. Hillsdale: Erlbaum.Google Scholar
  8. Cohen, Morris R., and I.E. Drabkin. 1948. A source book in Greek science. New York: McGraw-Hill Book Co.Google Scholar
  9. Damerow, Peter, and Wolfgang Lefèvre. 1980. Die wissenschaftshistorische Problemlage für Hegels ‘Logik’. In Hegel-Jahrbuch 1979, ed. W.R. Beyer, 349–368. Meisenheim am Glan: Anton Hain.Google Scholar
  10. Damerow, Peter, Jürgen Renn, Simone Rieger, and Paul Weinig. 2002. Mechanical knowledge and Pompeian balances. In Homo faber: Studies on nature, technology, and science at the time of Pompeii, ed. Jürgen Renn and Giuseppe Castagnetti, 93–108. Rome: L’Erma di Bretschneider.Google Scholar
  11. Damerow, Peter, Gideon Freudenthal, Peter McLaughlin, and Jürgen Renn. 2004. Exploring the limits of preclassical mechanics – A study of conceptual development in early modern science: Free fall and compounded motion in the work of Descartes, Galileo, and Beeckman. 2nd ed. New York: Springer.CrossRefGoogle Scholar
  12. Davis, Robert B. 1984. Learning mathematics: The cognitive science approach to mathematics education. London: Croom Helm.Google Scholar
  13. Dijksterhuis, E.J. 1956. Die Mechanisierung des Weltbildes. Berlin: Springer.CrossRefGoogle Scholar
  14. ———. 1986. The mechanization of the world picture: Pythagoras to Newton. Princeton: Princeton University Press.Google Scholar
  15. Drabkin, Israel Edward. 1938. Notes on the laws of motion in Aristotle. American Journal of Philology 59: 60–84.CrossRefGoogle Scholar
  16. Euler, Leonhard. 1744. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti. Lausanne: Bousquet.Google Scholar
  17. ———. 1748. Introductio in analysin infinitorum. Vol. 2. Lausanne: Bousquet.Google Scholar
  18. Fillmore, Charles J. 1976. Frame semantics and the nature of language. Annals of the New York Academy of Sciences: Conference on the Origin and Development of Language and Speech 280: 20–32.CrossRefGoogle Scholar
  19. ———. 1985. Frames and the semantics of understanding. Quaderni di Semantica 6: 222–254.Google Scholar
  20. Freudenthal, Gideon. 2002. Perpetuum mobile: The Leibniz-Papin controversy. Studies in History and Philosophy of Science 33: 573–637.CrossRefGoogle Scholar
  21. Galilei, Galileo. 1638. Discorsi e dimostrazioni matematiche intorno à due nuove scienze. Leiden: Appresso gli Elsevirii.Google Scholar
  22. ———. 1960. On motion and on mechanics: Comprising De Motu (ca. 1590). Translated with introduction and notes by I. E. Drabkin, and Le Meccaniche (ca. 1600), translated with introduction and notes by Stillman Drake. Madison: University of MadisonGoogle Scholar
  23. Gentner, Dedre, and Albert L. Stevens, eds. 1983. Mental models. Hillsdale: Erlbaum.Google Scholar
  24. Hankins, Thomas L. 1965. Eighteenth-century attempts to resolve the vis viva controversy. Isis 56: 281–297.Google Scholar
  25. Heath, Thomas Little. 1949. Mathematics in Aristotle. Oxford: Clarendon Press.Google Scholar
  26. ———, ed. 1953. The works of Archimedes. New York: Dover Publications.Google Scholar
  27. Heron von Alexandria. 1900. Mechanik und Katoptrik. Transl. L. Nix and W. Schmidt. Leipzig: Teubner.Google Scholar
  28. Iltis, Carolyn. 1970. D’Alembert and the vis viva controversy. Studies in History and Philosophy of Science 1: 135–144.CrossRefGoogle Scholar
  29. Johnson-Laird, Philip N. 1983. Mental models. Cambridge, MA: Harvard University Press.Google Scholar
  30. ———. 1989. Mental models. In Foundations of cognitive science, ed. M.I. Posner, 469–499. Cambridge, MA: MIT Press.Google Scholar
  31. Krafft, Fritz. 1970. Dynamische und statische Betrachtungsweise in der antiken Mechanik. Wiesbaden: F. Steiner.Google Scholar
  32. Kuhn, Thomas S. 1962. The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  33. Laudan, Larry. 1968. A postmortem on the vis viva controversy. Isis 59: 130–143.CrossRefGoogle Scholar
  34. Lehrer, Adrienne, and Eva Feder Kittay, eds. 1992. Frames, fields, and contrasts: New essays in semantic and lexical organization. Hillsdale: L. Erlbaum Associates.Google Scholar
  35. Maier, Anneliese. 1949. Die Vorläufer Galileis im 14. Jahrhundert. Rome: Edizioni di Storia e letteratura.Google Scholar
  36. ———. 1952. An der Grenze von Scholastik und Naturwissenschaft. Rome: Edizioni di Storia e letteratura.Google Scholar
  37. McCloskey, Michael. 1983. Naive theories of motion. In Mental models, ed. Dedre Gentner and Albert L. Stevens. Hillsdale: Erlbaum.Google Scholar
  38. Minsky, Marvin. 1975. A framework for representing knowledge. In The psychology of computer vision, ed. Patrick Henry Winston, 211–276. New York: McGraw-Hill.Google Scholar
  39. ———. 1985. The society of mind. New York: Simon and Schuster.Google Scholar
  40. ———. 1990. Mentopolis. Stuttgart: Klett-Cotta.Google Scholar
  41. Moody, Ernest A., and Marshall Clagett. 1952. The medieval science of weights: Scientia de ponderibus: Treatises ascribed to Euclid, Archimedes, Thabit Ibn Qurra, Jordanus De Nemore and Blasius of Parma. Madison: University of Wisconsin Press.Google Scholar
  42. Newton, Isaac. 1999. Die mathematischen Prinzipien der Physik. Berlin: De Gruyter.Google Scholar
  43. Papineau, David. 1977. The vis viva controversy. Studies in History and Philosophy of Science 8: 111–142.Google Scholar
  44. Piaget, Jean. 1978. Die historische Entwicklung und die Psychogenese des Impetusbegriffs. In Die Psychologie des 20. Jahrhunderts, vol. 7. Piaget und die Folgen, ed. Gerhard Steiner, 64–73. Zurich: Kindler.Google Scholar
  45. Piaget, Jean, and Rolando Garcia. 1989. Psychogenesis and the history of science. New York: Columbia University Press.Google Scholar
  46. Portz, Helga. 1994. Galilei und der heutige Mathematikunterricht: Ursprüngliche Festigkeitslehre und Ähnlichkeitsmechanik und ihre Bedeutung für die mathematische Bildung. Mannheim: B.I. Wissenschaftsverlag.Google Scholar
  47. Renn, Jürgen, and Peter Damerow. 2007. Mentale Modelle als kognitive Instrumente der Transformation von technischem Wissen. In Übersetzung und Transformationen, ed. Hartmut Böhme, Christof Rapp, and Wolfgang Rösler, 311–331. Berlin: De Gruyter.Google Scholar
  48. Renn, Jürgen, Peter Damerow, and Simone Rieger. 2000. Hunting the white elephant: When and how did Galileo discover the law of fall? Science in Context 13: 299–419.CrossRefGoogle Scholar
  49. Rose, Paul Lawrence, and Stillman Drake. 1971. The pseudo-Aristotelian Questions of mechanics in Renaissance culture. Studies in the Renaissance 18: 65–104.Google Scholar
  50. Russell, John Malcolm. 1991. Sennacherib’s palast without rival at Nineveh. Chicago: University of Chicago Press.Google Scholar
  51. Schemmel, Matthias. 2006. The English Galileo: Thomas Harriot and the force of shared knowledge in early modern mechanics. Physics in Perspective 8 (4): 360–380.CrossRefGoogle Scholar
  52. ———. 2008. The English Galileo: Thomas Harriot’s work on motion as an example of preclassical mechanics, 2 vols. Boston Studies in the Philosophy of Science. Vol. 268. Dordrecht: Springer.Google Scholar
  53. Ueberweg, Friedrich. 1882. System der Logik und Geschichte der logischen Lehren. 5th ed. Bonn: Adolph Marcus.Google Scholar
  54. Wilson, Robert A., and Frank C. Keil, eds. 1999. The MIT encyclopedia of the cognitive sciences. Cambridge, MA: MIT Press.Google Scholar
  55. Wolff, Michael. 1978. Geschichte der Impetustheorie: Untersuchungen zum Ursprung der klassischen Mechanik. Suhrkamp: Frankfurt am Main.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jürgen Renn
    • 1
  • Peter Damerow
    • 1
  • Matthias Schemmel
    • 1
  • Christoph Lehner
    • 1
  • Matteo Valleriani
    • 1
  1. 1.Max Planck Institute for the History of ScienceBerlinGermany

Personalised recommendations