Advertisement

The Involvement of Different Secondary Metabolites in Salinity Tolerance of Crops

  • Oksana Sytar
  • Sonia Mbarki
  • Marek Zivcak
  • Marian Brestic
Chapter

Abstract

Salt stress decreased plant growth and development; affects carbon metabolism, ion toxicity, nutritional status, and oxidative metabolism; and modulates the levels of secondary metabolites which are important physiological parameters in salt stress tolerance. Recent progress has been made in the identification and characterization of the mechanisms that allow plants to tolerate high salt concentrations and drought stress. Accumulation of secondary metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. The focus of the present chapter is the influence of salt stress on secondary metabolite production and some of important plant pharmaceuticals. Enhanced synthesis in the cytosol of determined secondary metabolites (anthocyanins, flavones, phenolics, and specific phenolic acids) under stress condition may protect cells from ion-induced oxidative damage by binding the ions and thereby showing reduced toxicity on cytoplasmic structures. The aim of this study was to determine the physiological implication of secondary metabolites in salt-tolerant crops.

Keywords

Secondary metabolites Salt stress Phenolic acids Anthocyanins Phenolics Salt-tolerant plants Non-salt-tolerant plants 

Abbreviation

CAT

Catalase

GPX

Glutathione peroxidase

GSTs

Glutathione-S-transferase

PAL

Phenylalanine ammonium lyase

ROS

Reactive oxygen species

Notes

Acknowledgment

This work was supported by the research project of the Scientific Grant Agency of Slovak Republic VEGA- 613 1-0923-16, VEGA-1-0831-17, and APVV-15-0721.

References

  1. Abbasi A, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abdallah SB, Rabhi M, Harbaoui F et al (2013) Distribution of phenolic compounds and antioxidant activity between young and old leaves of Carthamus tinctorius L. and their induction by salt stress. Acta Physiol Plant 35:1161CrossRefGoogle Scholar
  3. Abdell C, Barhoumi Z, Ghnaya T, Debez A, Hamed KB, Ksouri R, Talbi O, Zribi F, Ouerghi Z, Smaoui A (2006) Potential utilisation of halophytes for the rehabilitation and valorisation of salt-affected areas in Tunisia. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Biosaline agriculture and salinity tolerance in plants. Springer, London, pp 163–172CrossRefGoogle Scholar
  4. Abideen Z, Qasim M, Rasheed A, Yousuf AM, Gul B, Khan M (2015) A. Antioxidant activity and polyphenolic content of Phragmites karka under saline conditions. Pak J Bot 47(3):813–818Google Scholar
  5. Adams PR, Kendall E, Kartha KK (1990) Comparison of free sugars in growing and desiccated plants of Selaginella lepidophylla. Biochem Syst Ecol 18:107–110CrossRefGoogle Scholar
  6. Ali RM, Elfeky SS, Abbas H (2008) Response of salt stressed Ricinus communis L. to exogenous application of glycerol and/or aspartic acid. J Biol Sci 8(1):171–175CrossRefGoogle Scholar
  7. Amirjani MR (2013) Effects of drought stress on the alkaloid contents and growth parameters of Catharanthus roseus. J Agric Biol Sci 8(11):745–750Google Scholar
  8. Andersson D, Chakrabarty R, Bejai S, Zhang J, Rask L, Meijer J (2009) Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties. Phytochemistry 70:1345–1354PubMedCrossRefGoogle Scholar
  9. Ansari SR, Frooqi AHA, Sharma S (1998) Interspecific variation in sodium and potassium ion accumulation and essential oil metabolism in three Cymbopogon species raised under sodium chloride stress. J Essent Oil Res 10:413–418CrossRefGoogle Scholar
  10. Armitage AM (2000) Armitages garden perennials. Timber Press. ISBN-10: 0881924350Google Scholar
  11. Ashraf MA, Ashraf M, Ali Q (2010) Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak J Bot. 2010 42(1):559–565Google Scholar
  12. Aziz EE, Hussein A-A, Lyle EC (2008) Influence of salt stress on growth and essential oil production in peppermint, pennyroyal, and apple mint. J Herbs Spices Med Plants 14(1–2):77–87CrossRefGoogle Scholar
  13. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils – a review. Food Chem Toxicol 46(2):446–475PubMedCrossRefGoogle Scholar
  14. Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11(5):705–719PubMedGoogle Scholar
  15. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111PubMedPubMedCentralCrossRefGoogle Scholar
  16. Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ 5:287–292Google Scholar
  17. Bruneton J (1999) Tanins. In: Pharmacognosie, phytochimie, plantes médicinales, 3rd edn. Lavoisier, Paris, France, pp 370–404Google Scholar
  18. Cachorro P, Ortiz A, Barcelö AR, Cerdä A (1993) Lignin deposition in vascular tissues of Phaseolus vulgaris roots in response to salt stress and Ca2+ ions. Phyton (Horn, Austria) 33:33–40Google Scholar
  19. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184PubMedCrossRefGoogle Scholar
  20. Castro NEA, Carvalho GJ, Cardoso MG, Pimentel FA, Correa RM, Guimarães LGL (2008) Avaliação de rendimento e dos constituintes químicos do óleo essencial de folhas de Eucalyptus citriodora Hook. Colhidas em diferentes épocas do ano em municípios de Minas Gerais. Revista Brasileira de Plantas Medicinais 10(1):70–75Google Scholar
  21. Chang HL, Jiny L, Ki SK (2006) Changes of phenolic compounds and abscisic acid in Liriope spicata seeds according to cold stratification and seed harvesting date and their relationships to germination. Hortic Environ Biotechnol 47(1):34–40Google Scholar
  22. Chang C-Y, Chiang JCH, Wehner MF, Friedman A, Ruedy R (2011) Sulfate aerosol control of tropical Atlantic climate over the 20th century. J Clim 24:2540–2555. https://doi.org/10.1175/2010JCLI4065.1 CrossRefGoogle Scholar
  23. Chattopadhyay S, Marques JT, Yamashita M, Peters KL, Smith K, Desai A, Williams BR, Sen GC (2010) Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO J 29(10):1762–1773. https://doi.org/10.1038/emboj.2010.50 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chandna R, Azooz MM, Ahmad P (2013) Recent advances of metabolomics to reveal plant response during salt stress. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants: signalling, omics and adaptations. Springer, New York, pp 1–14Google Scholar
  25. Chen L-H, Zhang B, Xu Z-Q (2008) Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res 17:121PubMedCrossRefGoogle Scholar
  26. Chen X, Zhang X, Jia A, Xu G, Hu H, Hu X, Hu L (2016) Jasmonate mediates salt-induced nicotine biosynthesis in tobacco (Nicotiana tabacum L.). Plant Divers 38:118–123CrossRefPubMedPubMedCentralGoogle Scholar
  27. Clifford MN, Wu W, Kuhnert N (2006) The chlorogenic acids of Hemerocallis. Food Chem 95(4):574–578CrossRefGoogle Scholar
  28. Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134PubMedCrossRefGoogle Scholar
  29. Daneshmand F, Arvin MJ, Kalantari KM (2010) Physiological responses to NaCl stress in three wild species of potato in vitro. Acta Physiol Plant 32:91–101CrossRefGoogle Scholar
  30. Dardanelli MS, Fernandez de Cordoba FJ, Espuny MR, Rodrıguez Carvajal MA, Mes D, Antonio M, Serrano G, Yaacov O, Manuel M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721CrossRefGoogle Scholar
  31. Darke R (1999) The color encyclopedia of ornamental grasses. Timber Press, Portland. isbn: 10: 0881924644Google Scholar
  32. Dehghan N, de Mestral C, McKee MD, Schemitsch EH, Nathens A (2014) Flail chest injuries: a review of outcomes and treatment practices from the National Trauma Data Bank. J Trauma Acute Care Surg 76(2):462–468. https://doi.org/10.1097/TA.0000000000000086 CrossRefPubMedGoogle Scholar
  33. Dirr MA (1997) Dirrs hardy trees. Timber Press, Portland. isbn: 0881924040Google Scholar
  34. Dyduch-Siemińska M, Najda A, Dyduch J, Gantner M, Klimek K (2015) The content of secondary metabolites and antioxidant activity of wild strawberry fruit (Fragaria vesca L.). J Anal Methods Chem 2015:8. Article ID 831238CrossRefGoogle Scholar
  35. Ehsen S, Qasim M, Abideen Z, Rizvi RF, Gul B, Ansari R, Ajmal Khan M (2016) Secondary metabolites as anti-nutritional factors in locally used halophytic forage/fodder. Pak J Bot 48(2):629–636Google Scholar
  36. Eichholz I, Huyskens-Keil S, Keller A, Ulrich D, Kroh LW, Rohn S (2011) UV-B-induced changes of volatile metabolites and phenolic compounds in blueberries (Vaccinium corymbosum L.). Food Chem 126(1):60–64CrossRefGoogle Scholar
  37. Escaray F, Pesqueira J, Damiani F, Paolocci F, Pedro CS, Ruiz OA (2007) Condensed tannins in Lotus species under salt stress. Lotus Newsl 37(2):81–83Google Scholar
  38. Falleh H, Ksouri R, Chaieb K, Karray-Bouraoui N, Trabelsi N, Boulaaba M, Abdelly C (2008) Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C R Biologies 331:372–379PubMedCrossRefPubMedCentralGoogle Scholar
  39. Falleh H, Msilini N, Oueslati S, Ksouri R, Magné C, Lachaâl M (2013) Diplotaxis harra and diplotaxis simplex organs: assessment of phenolics and biological activities before and after fractionation. Industr Crops Prod 45:141–147CrossRefGoogle Scholar
  40. Faten M, Hanen F, Riadh K, Chedly A (2014) Total phenolic, flavonoid and tannin contents and antioxidant andantimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J Taibah Univ Sci 8:216–224CrossRefGoogle Scholar
  41. Ferrell KE, Thorington RW (2006) Squirrels: the animal answer guide. Johns Hopkins University Press, Baltimore, p 91Google Scholar
  42. Fischer NH, Williamson GB, Weidenhamer JD et al (1994) In search of allelopathy in the Florida scrub: the role of terpenoids. J Chem Ecol 20:1355PubMedCrossRefGoogle Scholar
  43. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedPubMedCentralCrossRefGoogle Scholar
  44. Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431PubMedCrossRefGoogle Scholar
  45. Foo LY, Newman R, Waghorn G, Mcnabb WC, Ulyatt MJ (1996) Proanthocyanidins from Lotus corniculatus. Phytochemistry 41:617–624CrossRefGoogle Scholar
  46. Forkner RE, Marquis RJ, Lill JT (2004) Feeny revisited: condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecol Entomol 29:174–187CrossRefGoogle Scholar
  47. Fu XZ, Ullah Khan E, Hu SS, Fan QJ, Liu JH (2011) Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot 74:106–113CrossRefGoogle Scholar
  48. Gagneul D, Ainouche A, Duhaze C, Lugan R, Lahrer FR, Bouchereau A (2007) A reassessment of the function of the so-called compatible solutes in the halophytic plumbaginaceae Limonium latifolium. Plant Physiol 144:1598–1611PubMedPubMedCentralCrossRefGoogle Scholar
  49. Galletti S, Barillari J, Iori R, Venturi G (2006) Glucobrassicin enhancement in woad (Isatis tinctoria) leaves by chemical and physical treatments. J Sci Food Agric 86:1833–1838CrossRefGoogle Scholar
  50. García-Calderón M, Pons-Ferrer T, Mrázova A et al (2015) Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Front Plant Sci 6:760PubMedPubMedCentralCrossRefGoogle Scholar
  51. Gebrehiwot L, Beuselinck PR, Roberts CA (2002) Seasonal variations in condensed tannin concentration of three Lotus species. Agron J 94:1059–1065CrossRefGoogle Scholar
  52. Gerhold HD et al (2001) Landscape tree factsheets. Penn State University, State CollegeGoogle Scholar
  53. Gerson EA, Kelsey RG, St Clair JB (2009) Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study. Ann Bot 103:447–457PubMedCrossRefGoogle Scholar
  54. Ghosh N, Adak MK, Ghosh PD et al (2011) Differential responses of two rice varieties to salt stress. Plant Biotechnol Rep 5:89CrossRefGoogle Scholar
  55. Gourguillon L, Lobstein A, Gondet L (2016) Effects of explant type, culture media and growth regulators for callus induction of a potential bioactive halophyte: Armeria maritima (Plumbaginaceae). Planta Med 81(S 01):S1–S381Google Scholar
  56. Gupta OP, Karkute SG, Banerjee S, Meena NL, Anil D (2017) Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Front Plant Sci 8:374PubMedPubMedCentralGoogle Scholar
  57. Haghighi L, Majd A, Zadeh GN, Shokri M, Kelij S, Irian S (2014) Salt-induced changes in cell wall peroxidase (CWPRX) and phenolic content of Aeluropus littoralis (Willd) Parl. Aust J Crop Sci 8(2):296–300Google Scholar
  58. Hajdari A, Behxhet M, Gresa A, Bledar P, Brigitte L, Alban I, Gjoshe S, Quave CL, Novak J (2015) Essential oil composition variability among natural populations of Pinus mugo Turra in Kosovo. Springerplus 4:828PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hajlaoui H, Denden M, El Ayeb N (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crop Prod 30(1):144–151CrossRefGoogle Scholar
  60. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333PubMedCrossRefGoogle Scholar
  61. Hamed KB, Ellouzi H, Talbi OZ, Hessini K, Slama I, Ghnaya T, Bosch SM, Savouré A, Abdelly C (2013) Physiological response of halophytes to multiple stresses. Funct Plant Biol 40:883–896Google Scholar
  62. Hanny BW, Hedin PA (1972) Phytochemical studies in the family Malvaceae. II. Analysis of some chemical constituents of four Hibiscus species. Diss Abstr Int B 33:1424aGoogle Scholar
  63. Hao G, Du X, Zhao F et al (2010) Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba. Biotechnol Lett 32:305PubMedCrossRefGoogle Scholar
  64. Hare PD, Cress WA, Staden JV (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553. https://doi.org/10.1046/j.1365-3040.1998.00309.x CrossRefGoogle Scholar
  65. Harrathi J, Hosni K, Karray-Bouraoui N, Attia H, Marzouk B, Magné C, Lachaâl M (2012) Effect of salt stress on growth, fatty acids and essential oils in safflower (Carthamus tinctorius L.). Acta Physiol Plant 34:129CrossRefGoogle Scholar
  66. Hasegawa M, Bressan R, Pardo JM (2000) The dawn of plant salt tolerance genetics. Trends Plant Sci 5:317–319PubMedCrossRefGoogle Scholar
  67. Hashidoko Y (1996) The phytochemistry of Rosa rugosa. Phytochemistry 43(3):535–549CrossRefGoogle Scholar
  68. Haslam E (1996) Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod 59(2):205–215PubMedCrossRefGoogle Scholar
  69. He X, Huang W, Chen W, Dong T, Liu C, Chen Z, Xu S, Ruan Y (2009) Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci (China) 21(2):199–203CrossRefGoogle Scholar
  70. Herve du Penhoat CLM, Michon VMF, Peng S, Viriot C, Scalbert A, Gage D, Roburins A-E (1991) Structural elucidation of new dimeric ellagitannins from Quercus robur L. J Chem Soc Perkin Trans 7:1653–1660CrossRefGoogle Scholar
  71. Hierro JL, Callaway RM (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29CrossRefGoogle Scholar
  72. Janz D, Behnke K, Schnitzler JP, Kanawati B, Schmitt-Kopplin P, Polle A (2010) Pathway analysis of the transcriptome and metabolome of salt sensitive and tolerant poplar species reveals evolutionary adaption of stress tolerance mechanisms. BMC Plant Biol 10:150PubMedPubMedCentralCrossRefGoogle Scholar
  73. Janz D, Lautner S, Wildhagen H, Behnke K, Schnitzler JP, Rennenberg H, Fromm J, Polle A (2012) Salt stress induces the formation of a novel type of ‘pressure wood’ in two Populus species. New Phytol 194(1):129–141PubMedCrossRefGoogle Scholar
  74. Jdey A, Falleh H, Jannet SB, Hammi KM, Dauvergne X, Magné C, Ksouri R (2017) Anti-aging activities of extracts from Tunisian medicinal halophytes and their aromatic constituents. EXCLI J 16:755PubMedPubMedCentralGoogle Scholar
  75. Jefferies RL, Rudmik T (1984) The responses of halophytes to salinity: an ecological perspective. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 213–227Google Scholar
  76. Kapusta I, Bogdan J, Barbara S, Stochmal A, Piacente S, Pizza C, Franceschi F, Chlodwig F, Wieslaw O (2007) Flavonoids in horse chestnut (Aesculus hippocastanum) seeds and powdered waste water byproducts. J Agric Food Chem 55(21):8485–8490PubMedCrossRefGoogle Scholar
  77. Karahara I, Ikeda A, Kondo T, Uetake Y (2004) Development of the casparian strip in primary roots of maize under salt stress. Planta 219:41PubMedCrossRefGoogle Scholar
  78. Karker M, De Tommasi N, Smaoui A, Abdelly C, Ksouri R, Braca A (2016) New sulphated flavonoids from Tamarix africana and biological activities of its polar extract. Planta Med 82:1374–1380PubMedCrossRefGoogle Scholar
  79. Katschnig D, Broekman R, Rozema J (2013) Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology. Environ Exp Bot 92:32–42CrossRefGoogle Scholar
  80. Kelij S, Majd A, Nematzade G, Jounobi P (2015) Activation of lignin biosynthetic enzymes during internodal development of Aeluropus littoralis exposed to NaCl. J Genet Resour 1(1):19–24Google Scholar
  81. Keutgen AJ, Pawelzik E (2008) Quality and nutritional value of strawberry fruit under long term salt stress. Food Chem 107(4):1413–1420CrossRefGoogle Scholar
  82. Kondo T, Yoshida K, Nakagawa A, Kawai T, Tamura H, Goto T (1992) Commelinin, a highly associated metalloanthocyanin present in the blue flower petals of Commelina communis. Nature 358:515–517CrossRefGoogle Scholar
  83. Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45(3–4):244–249PubMedCrossRefGoogle Scholar
  84. Ksouri R, Falleh H, Megdiche W, Trabelsi N, Mhamdi B, Chaieb K, Bakrouf A, Magné C, Abdelly C (2009) Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents. Food Chem Toxicol 47:2083–2091PubMedCrossRefGoogle Scholar
  85. Ksouri R, Ksouri WM, Jallali I, Debez A, Magné C, Hiroko I, Abdelly C (2012) Review Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 32(4):289–326PubMedCrossRefGoogle Scholar
  86. Küçükboyaci N, Özkan S, Adigüzel N, Tosun F (2011) Characterisation and antimicrobial activity of Sophora alopecuroides L. var. alopecuroides alkaloid extracts. Turk J Biol 35:379–385Google Scholar
  87. Kumar AA, Gill KS (1995) Performance of aromatic grasses under saline and sodic stress condition. Salt tolerance of aromatic grasses. Indian Perfumer 39:39–44Google Scholar
  88. Kusari S, Zühlke S, Spiteller M (2011) Chemometric evaluation of the anti-cancer pro-drug podophyllotoxin and potential therapeutic analogues in Juniperusand podophyllum species. Phytochem Anal 22:128–143PubMedCrossRefGoogle Scholar
  89. Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ (2012) Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem 135(3):1065–1070PubMedCrossRefGoogle Scholar
  90. Liu R, Sun W, Chao MX, Ji CJ, Wang M, Ye BP (2009) Leaf anatomical changes of Bruguiera gymnorrhizaseedlings under salt stress. J Trop Subtropical Bot 17(2):169–175Google Scholar
  91. Lokhande VH, Nikam TD, Suprasanna P (2010) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 102:17–25CrossRefGoogle Scholar
  92. López-Berenguer C, Martínez-Ballesta CM, García-Viguera C, Carvajal M (2008) Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174(3):321–328CrossRefGoogle Scholar
  93. López-Berenguer C, Martínez-Ballesta MC, Moreno DA, Carvajal M, García-Viguera C (2009) Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem 57:572–578PubMedCrossRefGoogle Scholar
  94. López-Pérez L, Martínez Ballesta MC, Maurel C, Carvajal M (2009) Changes in plasma membrane composition of broccoli roots as an adaptation to increase water transport under salinity. Phytochemistry 70:492–500PubMedCrossRefGoogle Scholar
  95. Lotkowska ME, Tohge T, Fernie AR, Xue G-P, Balazadeh S, Mueller-Roeber B (2015) The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol 169(3):1862–1880PubMedPubMedCentralGoogle Scholar
  96. Maffi L, Benvenuti S, Fornasiero RB, Bianchi A, Melegari M (2001) Inter-population variability of secondary metabolites in Hypericum spp. (Hypericaceae) of the northern apennines, Italy. Nord J Bot 21:585–593CrossRefGoogle Scholar
  97. Maganha EG, da Costa Halmenschlager R, Moreira Rosa R, Henriques JAP, de Paula Ramos ALL, Saffi J (2010) Pharmacological evidences for the extracts and secondary metabolites from plants of the genus Hibiscus. Food Chem 118(1):1–10CrossRefGoogle Scholar
  98. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158PubMedCrossRefGoogle Scholar
  99. Majumdar S, Ghosh S, Glick BR, Dumbroff EB (1991) Activities of chlorophyllase, phosphoenolpyruvate carboxyllase and ribulose-1,5-bisphosphate carboxylase in the primary leaves of soybean drying senescence and drought. Physiol Plant 81:473–480CrossRefGoogle Scholar
  100. Mane AV, Karadge BA, Samant JS (2010) Salt stress induced alteration in photosynthetic pigments and polyphenols of Pennisetum alopecuroides (L.). J Ecophysiol Occup Health 10:177–182Google Scholar
  101. Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500CrossRefGoogle Scholar
  102. Marrs KA (1996) The function and regulation of glutathione-S-transferase in plants. Ann Rev Plant Physiol Plant Mol Biol 47:127–158CrossRefGoogle Scholar
  103. Mário M, Pavan Marcos A, Ziglio Cláudio O, Franchini Júlio C (2001) Reduction of exchangeable calcium and magnesium in soil with increasing pH. Braz Arch Biol Technol 44(2):149–153. https://doi.org/10.1590/S1516-89132001000200007 CrossRefGoogle Scholar
  104. Martinez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Expt Bot 56:2421–2431CrossRefGoogle Scholar
  105. Martínez-Ballesta MdC, Moreno DA, Carvajal M (2013) The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 14(6):11607–11625CrossRefGoogle Scholar
  106. Matern U (1994) Dianthus species (Carnation): in vitro culture and the biosynthesis of dianthalexin and other secondary metabolites. In: Medicinal and aromatic plants VII. Volume 28 of the series Biotechnology in agriculture and forestry, pp 170–184CrossRefGoogle Scholar
  107. Matkowski LA, Świąder K, Ślusarczyk S, Jezierska-Domaradzka A, Oszmiański J (2006) Free radical scavenging activity of extracts obtained from cultivated plants of Potentilla alba L. and Waldsteinia geoides. Herba Pol 52(4):91–97Google Scholar
  108. Meng Q, Niu Y, Niu X, Roubin RH, Hanrahan JR (2009) Ethnobotany, phytochemistry and pharmacology of the genus Caragana used in traditional Chinese medicine. J Ethnopharmacol 124(3):350–368PubMedCrossRefGoogle Scholar
  109. Misra N, Gupta AK (2006) Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol 163(1):11–18PubMedCrossRefGoogle Scholar
  110. Mssedi D, Sleimi N, Abdelly C (2000) Some plants: the origin of diacylglycerol moiety. Arch. Biophysiological and biochemical aspects of salt tolerchem. Biophys. 240, 851D858. ance of Sesuvium portulacastrum. In: Cash Crop Halophytes: Potentials, Pilot Projects, Basic and Applied Research on Halophytes and Saline Irrigabrane (Lieth H. and Moschenko M., eds.). EU conmembranes action (IC18CT96-0055) symposium, Germany, p. 25.Google Scholar
  111. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250PubMedCrossRefGoogle Scholar
  112. Murakeözy ÉP, Nagy Z, Duhazé C, Bouchereau A, Tuba Z (2003) Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J Plant Physiol 160:395–401PubMedPubMedCentralCrossRefGoogle Scholar
  113. Muthukumarasamy M, Gupta SD, Pannerselvam R (2000) Enhancement of peroxidase, polyphenol oxidase and superoxide dismutase activities by triadimefon in NaCl stressed Raphanus sativus L. Biol Plant 43:317–320CrossRefGoogle Scholar
  114. Muthulakshmi Santhi M, Gurulakshmi SG, Rajathi S (2015) Effect of salt stress on physiological and biochemical characteristics in Solanum nigrum L. Int J Sci Res 4(3):567–571Google Scholar
  115. Nabeta K (1994) Larix leptolepis (Japanese Larch): In vitro culture and the production of secondary metabolites. In: Medicinal and aromatic plants VII. Volume 28 of the series Biotechnology in agriculture and forestry, pp 271–288CrossRefGoogle Scholar
  116. Navarro JM, Flores P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at ripening stages, as affected by salinity. Food Chem 96:66–73CrossRefGoogle Scholar
  117. Nelson DE, Shen B, Bohnert HJ (1998) The regulation of cell-specific inostol metabolism and transport in plant salinity tolerance. In: Setlow JK (ed) Genetic engineering, principles and methods. Plenum Publication, New York, pp 153–176Google Scholar
  118. Neves GYS, Marchiosi R, Ferrarese MLL, Siqueira-Soares RC, Ferrarese-Filho O (2010) Root growth inhibition and lignification induced by salt stress in soybean. J Agron Crop Sci 196(6):467–473CrossRefGoogle Scholar
  119. Ngara R, Ndimba R, Borch-Jensen J et al (2012) Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J Proteome 75:4139–4150. https://doi.org/10.1016/j.jprot.2012.05.038 CrossRefGoogle Scholar
  120. Nguyen NTH, Arima S, Konishi T, Ogawa Y, Adaniya S, Keiji M (2015) Variation of oxypinnatanine concentration in daylily (Hemerocallis spp.) influenced by ploidy levels, growth stages, and environmental factors. Trop Agric Dev 59(4):179–189Google Scholar
  121. Niu SS, Xu CJ, Zhang WS, Zhang B, Li X, Lin-Wang K, Ferguson IB, Allan AC, Chen KS (2010) Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor. Planta 231:887PubMedCrossRefGoogle Scholar
  122. Olivoto T, Nardino M, Carvalho IR, Follmann DN, Szareski VJ, Pelegrin AJ, Souza VQ (2017) Plant secondary metabolites and its dynamical systems induction in response to environmental factors. Afr J Agric Res 12(2):71–84. 2017CrossRefGoogle Scholar
  123. Ouchikh O, Thouraya C, Riadh K, Mouna Ben T, Hanen F, Chedly A, Mohamed EK, Brahim M (2011) The effects of extraction method on the measured tocopherol level and antioxidant activity of L. nobilis vegetative organs. J Food Compos Anal 24:103–110CrossRefGoogle Scholar
  124. Palo RT (1984) Distribution of birch (Betula SPP.), willow (Salix SPP.), and poplar (Populus SPP.) secondary metabolites and their potential role as chemical defense against herbivores. J Chem Ecol 10:499PubMedCrossRefGoogle Scholar
  125. Pang Q, Guo J, Chen S, Chen Y, Zhang L, Fei M, Jin S, Li M, Wang Y, Yan X (2012) Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant Soil 355:363–374CrossRefGoogle Scholar
  126. Panich U, Kongtaphan K, Onkoksoong T, Jaemsak K, Phadungrakwittaya R, Thaworn A (2010) Modulation of antioxidant defense by Alpinia galanga and Curcuma aromatica extracts correlates with their inhibition of UVA-induced melanogenesis. Cell Biol Toxicol 26:103–116PubMedCrossRefGoogle Scholar
  127. Paniwnyk L, Beaufoy E, Lorimer JP, Mason TJ (2001) The extraction of rutin from flower buds of Sophora japonica. Ultrason Sonochem 8(3):299–301PubMedCrossRefGoogle Scholar
  128. Paolocci F, Bovone T, Tosti N, Arcioni S, Damiani F (2005) Light and an exogenous transcription factor qualitatively and quantitatively affect the biosynthetic pathway of condensed tannins in Lotus corniculatus leaves. J Exp Bot 56:1093–1103PubMedCrossRefGoogle Scholar
  129. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349PubMedCrossRefPubMedCentralGoogle Scholar
  130. Patnaik J, Debata BK (1997) Regeneration of plantlets from NaCl tolerant callus lines of C. martinii (Roxb). Wats Plant Sci 128:67–74CrossRefGoogle Scholar
  131. Piluzza G, Bullitta S (2011) Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethno veterinary use in the Mediterranean area. Pharm Biol 49(3):240–247PubMedCrossRefGoogle Scholar
  132. Posmyk MM, Kontek R, Janas KM (2009) Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicol Environ Saf 72:596–602PubMedCrossRefGoogle Scholar
  133. Qasim SE, Jacobs J (2016) Human hippocampal theta oscillations during movement without visual cues. Neuron 89(6):1121–1123. https://doi.org/10.1016/j.neuron.2016.03.003 CrossRefPubMedGoogle Scholar
  134. Ragagnin RCG, Albuquerque CC, Oliveira FFM, Santos RG, Gurgel EP, Diniz JC, Rocha SAS, Viana FA (2014) Effect of salt stress on the growth of Lippia gracilis Schauer and on the quality of its essential oil. Acta Bot Brasilica 28(3):346–351CrossRefGoogle Scholar
  135. Redovnikovi IR, Gliveti T, Delonga K, Vorkapi-Fura J (2008) Glucosinolates and their potential role in plant. Period Biol 110(4):297–309Google Scholar
  136. Reinoso H, Sosa L, Ramírez L, Luna V (2004) Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Can J Bot 82(5):618–628CrossRefGoogle Scholar
  137. Sachan N, Rogers DT, Yun KY, Littleton JM, Falcone DL (2010) Reactive oxygen species regulate alkaloid metabolism in undifferentiated N. tabacum cells. Plant Cell Rep 29:437PubMedCrossRefGoogle Scholar
  138. Sadeghi Z, Valizadeh J, Azyzian Shermeh O, Akaberi M (2015) Antioxidant activity and total phenolic content of Boerhavia elegans (choisy) grown in Baluchestan, Iran. Avicenna J Phytomedicine 1:1–9Google Scholar
  139. Salah A-I (2015) Chapter 8: Plant secondary metabolites of halophytes and salt tolerant plants. In: El Shaer HM, Squires VR (eds) Halophytic and salt-tolerant feedstuffs, impacts on nutrition, physiology and reproduction of livestock, 1st edn. CRC Press, Boca Raton, pp 127–142Google Scholar
  140. Sánchez-Aguayo I, Rodríguez-Galán JM, García R, Torreblanca J, Pardo JM (2004) Salt stress enhances xylem development and expression of S-adenosyl-l-methionine synthase in lignifying tissues of tomato plants. Planta 220:278PubMedCrossRefGoogle Scholar
  141. Sangwan N, Farooqi A, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3CrossRefGoogle Scholar
  142. Santos J, Al-Azzawi M, Aronson J, Flowers TJ (2015) eHALOPH a data base of salt-tolerant plants: helping put halophytes to work. Plant Cell Physiol 57:e10PubMedCrossRefGoogle Scholar
  143. Sarikamiş G, Çakir A (2017) Influence of salinity on aliphatic and indole glucosinolates in broccoli (Brassica oleracea var. italica). Appl Ecol Environ Res 15(3):1781–1788CrossRefGoogle Scholar
  144. Scalbert A, Haslam E (1987) Polyphenols and chemical defence of the leaves of Quercus robur. Phytochemistry 26(12):3191–3195CrossRefGoogle Scholar
  145. Selvam R, Jurkevich A, Kang SW, Mikhailova MV, Cornett LE, Kuenzel WJ (2013) Distribution of the vasotocin subtype four receptor (VT4R) in the anterior pituitary gland of the chicken, Gallus gallus, and its possible role in the avian stress response. J Neuroendocrinol 25:56–66. https://doi.org/10.1111/j.1365-2826.2012.02370.x CrossRefPubMedGoogle Scholar
  146. Shadkami F, Helleur RJ, Cox RM (2007) Profiling secondary metabolites of needles of ozone-fumigated white pine (Pinus strobus) clones by thermally assisted hydrolysis/methylation GC/MS. J Chem Ecol 33:1467PubMedCrossRefGoogle Scholar
  147. Shahri W, Tahir I, Islam ST, Bhat MA (2011) Physiological and biochemical changes associated with flower development and senescence in so far unexplored Helleborus orientalis Lam. cv. Olympicus. Physiol Mol Biol Plants 17(1):33–39PubMedPubMedCentralCrossRefGoogle Scholar
  148. Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Sci Hortic 78:5–38CrossRefGoogle Scholar
  149. Sheludko YV (2010) Recent advances in plant biotechnology and genetic engineering for production of secondary metabolites. Cytol Genet 44(1):52–60CrossRefGoogle Scholar
  150. Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci USA 97(12):6896–6901PubMedPubMedCentralCrossRefGoogle Scholar
  151. Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817PubMedPubMedCentralCrossRefGoogle Scholar
  152. Sinclair ARE, Jogia MK, Andersen RJ (1988) Camphor from juvenile white spruce as an antifeedant for snowshoe hares. J Chem Ecol 14:1505PubMedCrossRefGoogle Scholar
  153. Singh K, Kumar S, Rani A, Gulati A, Ahuja PS (2009) Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins ( fl avan-3-ols) accumulation in tea. Funct Integr Genomics 9:125–134PubMedCrossRefGoogle Scholar
  154. Slama I, Messedi D, Ghnaya T, Savouŕe A, Abdelly C (2006) Effects of water-deficit on growth and proline metabolism in Sesuvium portulacastrum. Environ Exp Bot 56:231–238CrossRefGoogle Scholar
  155. Slama I, Ghnaya T, Savouŕe A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol 331:442–451PubMedCrossRefGoogle Scholar
  156. Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115(3):433–447. https://doi.org/10.1093/aob/mcu239 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Slama I, M’Rabet R, Ksouri R, Talbi O, Debez A, Abdelly C (2017) Effects of salt treatment on growth, lipid membrane peroxidation, polyphenol content, and antioxidant activities in leaves of Sesuvium portulacastrum L. Arid Land Res Manag 31:1–14CrossRefGoogle Scholar
  158. Smelcerovic A, Verma V, Spiteller M, Mudasir AS, Satish CP, Ghulam NQ (2006) Phytochemical analysis and genetic characterization of six Hypericum species from Serbia. Phytochemistry 67(2):171–177PubMedCrossRefGoogle Scholar
  159. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58CrossRefGoogle Scholar
  160. Song X-L, Gao G-Y, Ye L-H (1996) Effects of total saponin of liriope spicata lour on experimental myocardial ischemia. Chin Pharmacol Bull 12:329–332Google Scholar
  161. Sreevidya VS, Srinivasa RC, Rao C, Sullia SB, Ladha JK, Reddy PM (2006) Metabolic engineering of rice with soyabean iso fl avone synthase for promoting nodulation gene expression in rhizobia. J Exp Bot 57:1957–1969PubMedCrossRefGoogle Scholar
  162. Stewart CD, Jones CD, Setzer WN (2014) Essential oil compositions of Juniperus virginiana and Pinus virginiana, two important trees in Cherokee traditional medicine. Am J Essent Oils Nat Prod 2(2):17–24Google Scholar
  163. Šutković J, Lerl D, Ragab MGA (2011) In vitro production of solasodine alkaloid in Solanum nigrum under salinity stress. J Phytology 3(1):43–49Google Scholar
  164. Sytar O, Zhenzhen C, Marian B, Prasad MNV, Taran N, Smetanska I (2013) Foliar applied nickel on buckwheat (Fagopyrum esculentum) induced phenolic compounds as potential antioxidants. Clean (Weinh) 41(11):1129–1137Google Scholar
  165. Sytar O, Bruckova K, Hunkova E, Zivcak M, Kiessoun K, Brestic M (2015) The application of muliplex flourimetric sensor for analysis flavonoids content in the medical herbs family Asteraceae, Lamiaceae, Rosaceae. Biol Res. 2015 48(5):1–9. https://doi.org/10.1186/0717-6287-48-5 CrossRefGoogle Scholar
  166. Sytar O, Hemmerich I, Zivcak M, Rauh C, Brestic M (2016) Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2016.01.036
  167. Szopa A, Ekiert H, Muszyńska B (2013) Accumulation of hydroxybenzoic acids and other biologically active phenolic acids in shoot and callus cultures of Aronia melanocarpa (Michx.) Elliott (black chokeberry). Plant Cell Tissue Organ Cult 113:323CrossRefGoogle Scholar
  168. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, MassachusettsGoogle Scholar
  169. Tingey DT, Wilhour RG, Standley C (1976) The Effect of chronic ozone exposures on the metabolite content of ponderosa pine seedlings. For Sci 22(3, 1):234–241Google Scholar
  170. Tomczyk M, Latté KP (2009) Potentilla – a review of its phytochemical and pharmacological profile. J Ethnopharmacol 122(2):184–204PubMedCrossRefGoogle Scholar
  171. Tóth G, Barabás C, Tóth A, Kéry Á, Béni S, Boldizsár I, Varga E, Noszál B (2016) Characterization of antioxidant phenolics in Syringa vulgaris L. flowers and fruits by HPLC-DAD-ESI-MS. Biomed Chromatogr 30(6):923–932PubMedCrossRefGoogle Scholar
  172. Tounekti T, Khemira H (2015) NaCl stress-induced changes in the essential oil quality and abietane diterpene yield and composition in common sage. J Intercult Ethnopharmacol 4(3):208–216PubMedPubMedCentralCrossRefGoogle Scholar
  173. Van Eijk M (1939) Analyse der Wirkung des NaCl auf die entwicklung sukkulenze und transpiration bei Salicornia herbacea, sowie untersuchungen über den einfluss der salzaufnahme auf die wurzelatmung bei Aster tripolium. Rec Trav Bot Neerl 36:559–657Google Scholar
  174. Van Oosten MJ, Sharkhuu A, Batelli G, Bressan Ray A, Maggio A (2013) The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Mol Biol 83(4–5):405–415PubMedCrossRefGoogle Scholar
  175. Vattem DA, Ghaedian R, Shetty K (2005) Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. Asia Pac J Clin Nutr 14(2):120–130PubMedGoogle Scholar
  176. Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46(10):4113–4117CrossRefGoogle Scholar
  177. Venditti A, Serrilli AM, Vittori S, Papa F, Maggi F, Di Cecco M, Ciaschetti G, Bruno M, Rosselli S, Bianco A (2013) Secondary metabolites from Pinus mugo Turra subsp. Mugo growing in the Majella National Park (Central Apennines, Italy). Chem Biodivers 10:2091–2100PubMedCrossRefGoogle Scholar
  178. Visser JM, Sasser CE, Cade BS (2006) The effect of multiple stressors on salt marsh end-of-season biomass. Estuaries Coasts 29(2):328–339CrossRefGoogle Scholar
  179. Wang F, Zhu H, Chen D, Li Z, Peng R, Yao Q (2016) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue Organ Cult (PCTOC) 125(2):387–398CrossRefGoogle Scholar
  180. Warren RL, Keeling CI, Yuen MM, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJ, MacKay J, Birol I, Bohlmann J (2015) Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J 83(2):189–212PubMedCrossRefGoogle Scholar
  181. Watanabe K, Mimaki Y, Sakagami H, Sashida Y (2003) Bufadienolide and spirostanol glycosides from the rhizomes of helleborus orientalis. J Nat Prod 66(2):236–241PubMedCrossRefGoogle Scholar
  182. Xue J-J, Fan C-Q, Dong L, Yang S-P, Yue J-M (2004) Novel antibacterial diterpenoids from Larix chinensis Beissn. Chem Biodivers 1:1702PubMedCrossRefGoogle Scholar
  183. Yan X, Chen S (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352PubMedCrossRefGoogle Scholar
  184. Yan K, Cui M, Zhao S, Chen X, Tang X (2016) Salinity stress is beneficial to the accumulation of chlorogenic acids in honeysuckle (Lonicera japonica Thunb.). Front. Plant Sci 7:1563Google Scholar
  185. Yi G, Lei Z, Zhong-Ji S, Zhu-Xia S, Yi-Qiong Z, Gen-Xuan W (2010) Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Bot Stud 51:325–336Google Scholar
  186. Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121(4):1014–1019CrossRefGoogle Scholar
  187. Zhou S-H, Fang Z-X, Lü Y, Chen J-C, Liu D-H, Ye X-Q (2009) Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. et Zucc.) pomace. Food Chem 112(2):394–399CrossRefGoogle Scholar
  188. Zou J, Liu C, Liu A, Zou D, Chen X (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J Plant Physiol 169(6):628–635PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Oksana Sytar
    • 1
    • 2
  • Sonia Mbarki
    • 3
  • Marek Zivcak
    • 1
  • Marian Brestic
    • 1
  1. 1.Plant Physiology and Ecology Department, Institute of BiologyTaras Shevchenko National University of KyivKyivUkraine
  2. 2.Department of Plant PhysiologySlovak University of Agriculture in NitraNitraSlovakia
  3. 3.Laboratory of Extremophile PlantsCentre de Biotechnologie de Borj CedriaHamam LifTunisia

Personalised recommendations