Metabolomics for Crop Improvement Against Salinity Stress

  • Luisa D’Amelia
  • Emilia Dell’Aversana
  • Pasqualina Woodrow
  • Loredana F. Ciarmiello
  • Petronia CarilloEmail author


In the post-genomic era, increasing efforts have been done to describe the relationship between genome and phenotype in plants. It has become clear that even a complete understanding of the state of the genes, messages, and proteins in a living system does not reveal its phenotype. Metabolites are the main readouts of gene vs environment interactions and represent the sum of all the levels of regulation in between gene and enzyme. Therefore, metabolome can be considered as the final recipient of biological information flow. Some metabolites have a very short lifetime and are indicators of specific metabolic reaction and of plant status. Indeed, it is well known that many of them are transformed during specific stresses and involved in plant stress response and resistance.

Salinity provides an important example of the effectiveness of metabolic changes in response to stress. In fact, exposure to salinity triggers specific strategies for cell osmotic adjustment and control of ion and water homeostasis to minimize stress damage and to reestablish growth. A ubiquitous mechanism that plants have evolved to adapt to salinity involves sodium sequestration in the vacuole, as a cheap osmoticum, and synthesis and accumulation of compatible compounds, both for osmotic adjustment and oxidative stress protection in the cytosol.

Metabolomics has been utilized for the study of plants in response to salinity stress in order to dissect particular patterns associated with stress tolerance. These studies have proven that certain metabolites are present in case of salt-induced metabolic dysfunction and can act as effectors of osmotic readjustment or antioxidant response. Thus, the presence of particular metabolite patterns can be associated with stress tolerance and could serve as accurate markers for salt-tolerant crop selection in breeding programs.


Osmotic adjustment Glycine betaine Asparagine Asparagine synthetase P5CS Nitrate reductase 





capillary electrophoresis


electron impact ionization MS


evaporative light scattering


electrospray ionization


Fourier transform ion cyclotron resonance


γ-aminobutyric acid


glycine betaine


gas chromatography


hydrophilic interaction liquid chromatography


high-performance anion-exchange chromatography with pulsed amperometric detection


high-performance liquid chromatography




ion trap


liquid chromatography


linear trap


Madison Metabolomics Consortium Database


mass spectrometry


mass-to-charge ratio






refractive index


size-exclusion chromatography


solid-phase extraction


time of flight


ultra-performance liquid chromatography


  1. Adamo M, Qiu D, Dick LW Jr, Zeng M, Lee A-H, Cheng K-C (2009) Evaluation of oligosaccharide methods for carbohydrate analysis in a fully human monoclonal antibody and comparison of the results to the monosaccharide composition determination by a novel calculation. J Pharm Biomed Anal 49:181–192PubMedCrossRefPubMedCentralGoogle Scholar
  2. Akçay N, Bor M, Karabudak T, Özdemir F, Türkan İ (2012) Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. J Plant Physiol 169:452–458PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alonso A, Marsal S, Julià A (2015) Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol 3:23PubMedPubMedCentralCrossRefGoogle Scholar
  4. Annunziata MG, Ciarmiello LF, Woodrow P, Maximova E, Fuggi A, Carillo P (2017) Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose. Front Plant Sci 7:2035PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci 14:4885–4911PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arrivault S, Guenther M, Ivakov A, Feil R, Vosloh D, Van Dongen JT, Sulpice R, Stitt M (2009) Use of reverse-phase liquid chromatography, linked to tandem mass spectrometry, to profile the Calvin cycle and other metabolic intermediates in Arabidopsis rosettes at different carbon dioxide concentrations. Plant J 59:826–839PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  8. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207CrossRefGoogle Scholar
  9. Benkeblia N (2014) Metabolomics and postharvest sciences: challenges and perspecitives. Acta Hortic 1047:303–308CrossRefGoogle Scholar
  10. Bessieres M-A, Gibon Y, Lefeuvre JC, Larher F (1999) A single-step purification for glycine betaine determination in plant extracts by isocratic HPLC. J Agric Food Chem 47:3718–3722PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111PubMedPubMedCentralCrossRefGoogle Scholar
  12. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247PubMedCrossRefPubMedCentralGoogle Scholar
  13. Carillo P (2018) GABA Shunt in durum wheat. Front Plant Sci 9:1–9Google Scholar
  14. Carillo P, Mastrolonardo G, Nacca F, Fuggi A (2005) Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct Plant Biol 32:209–219CrossRefGoogle Scholar
  15. Carillo P, Mastrolonardo G, Nacca F, Parisi D, Verlotta A, Fuggi A (2008) Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Funct Plant Biol 35:412–426CrossRefGoogle Scholar
  16. Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P (2011a) Salinity stress and salt tolerance, abiotic stress in plants – mechanisms and adaptations. In: Shanker A (ed) InTech. Available from: Google Scholar
  17. Carillo P, Gibon Y, PrometheusWiki contributors (2011b) Extraction and determination of glycine betaine. PrometheusWiki, and determination of glycine betaine&preview=10. Accessed 9 May 2017
  18. Carillo P, Parisi D, Woodrow P, Pontecorvo G, Massaro G, Annunziata MG, Fuggi A, Sulpice R (2011c) Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat. Funct Plant Biol 38:139–150CrossRefGoogle Scholar
  19. Carillo P, Feil R, Gibon Y, Satoh-Nagasawa N, Jackson D, Bläsing OE, Stitt M, Lunn JE (2013) A fluorometric assay for trehalose in the picomole range. Plant Methods 9:21PubMedPubMedCentralCrossRefGoogle Scholar
  20. Casella IG, Contursi M (2003) Isocratic ion chromatographic determination of underivatized amino acids by electrochemical detection. Anal Chim Acta 478:179–189CrossRefGoogle Scholar
  21. Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448CrossRefGoogle Scholar
  23. Corradini C, Cavazza A, Bignardi C (2012) High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. Int J Carbohydr Chem 2012:13CrossRefGoogle Scholar
  24. Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134CrossRefPubMedGoogle Scholar
  25. Cuin TA, Tian Y, Betts SA, Chalmandrier R, Shabala S (2009) Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions. Funct Plant Biol 36:110–119CrossRefGoogle Scholar
  26. Dettmer K, Aronov PA, Hammock BD (2007) Mass spectrometry-based metabolomics. Mass Spectrom Rev 26:51–78PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15:409–417PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157–1161PubMedCrossRefGoogle Scholar
  31. Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358PubMedCrossRefGoogle Scholar
  32. Fuhrer T, Zamboni N (2015) High-throughput discovery metabolomics. Curr Opin Biotechnol 31:73–78PubMedCrossRefGoogle Scholar
  33. Gavaghan CL, Li JV, Hadfield ST, Hole S, Nicholson JK, Wilson ID, Howe PWA, Stanley PD, Holmes E (2011) Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays). Phytochem Anal 22:214–224PubMedCrossRefGoogle Scholar
  34. Giavalisco P, Kohl K, Hummel J, Seiwert B, Willmitzer L (2009) 13C isotope-labeled metabolomes allowing for improved compound annotation and relative quantification in liquid chromatography–mass spectrometry-based metabolomic research. Anal Chem 81:6546–6551PubMedCrossRefGoogle Scholar
  35. Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839PubMedCrossRefGoogle Scholar
  37. Gorham J, Läuchli A, Leidi EO (2010) Plant responses to salinity. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, Dordrecht, pp 129–141CrossRefGoogle Scholar
  38. Guo R, Yang Z, Li F, Yan C, Zhong X, Liu Q, Xia X, Li H, Zhao L (2015) Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. BMC Plant Biol 15:170PubMedPubMedCentralCrossRefGoogle Scholar
  39. Häkkinen MR, Keinänen TA, Vepsäläinen J, Khomutov AR, Alhonen L, Jänne J, Auriola S (2008) Quantitative determination of underivatized polyamines by using isotope dilution RP-LC–ESI-MS/MS. J Pharm Biomed Anal 48:414–421PubMedCrossRefGoogle Scholar
  40. Hall RD (2006) Plant metabolomics: from holistic hope, to hype, to hot topic. New Phytol 169:453–468PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499CrossRefPubMedGoogle Scholar
  42. Herrera-Rodríguez MB, Maldonado JM, Pérez-Vicente R (2006) Role of asparagine and asparagine synthetase genes in sunflower (Helianthus annuus) germination and natural senescence. J Plant Physiol 163:1061–1070PubMedCrossRefPubMedCentralGoogle Scholar
  43. Iwasaki Y, Sawada T, Hatayama K, Ohyagi A, Tsukuda Y, Namekawa K, Ito R, Saito K, Nakazawa H (2012) Separation technique for the determination of highly polar metabolites in biological samples. Metabolites 2:496–515PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458CrossRefGoogle Scholar
  45. Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649PubMedCrossRefPubMedCentralGoogle Scholar
  46. Kim JK, Bamba T, Harada K, Fukusaki E, Kobayashi A (2007) Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment*. J Exp Bot 58:415–424PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kind T, Wohlgemuth G, Lee Do Y, Lu Y, Palazoglu M, Shahbaz S, Fiehn O (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kishor PBK, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell Environ 37:300–311Google Scholar
  49. Kopka J (2006) Current challenges and developments in GC–MS based metabolite profiling technology. J Biotechnol 124:312–322PubMedCrossRefGoogle Scholar
  50. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638PubMedCrossRefGoogle Scholar
  51. Kumar V, Khare T (2016) Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual (Na+ and Cl−) and additive stress effects of NaCl. Acta Physiol Plant 38:170CrossRefGoogle Scholar
  52. Kumar V, Singh A, Mithra SVA, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP, Singh NK, Mohapatra T (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res: Int J Rapid Publ Rep Genes Genomes 22:133–145CrossRefGoogle Scholar
  53. Kumari S, Stevens D, Kind T, Denkert C, Fiehn O (2011) Applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry. Anal Chem 83:5895–5902PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:537PubMedPubMedCentralCrossRefGoogle Scholar
  55. Last RL, Jones AD, Shachar-Hill Y (2007) Towards the plant metabolome and beyond. Nat Rev Mol Cell Biol 8:167PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26CrossRefGoogle Scholar
  57. Liu D, Ford KL, Roessner U, Natera S, Cassin AM, Patterson JH, Bacic A (2013) Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach. Proteomics 13:2046–2062PubMedCrossRefGoogle Scholar
  58. Liu J-H, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827PubMedPubMedCentralGoogle Scholar
  59. Lunn John E, Feil R, Hendriks Janneke HM, Gibon Y, Morcuende R, Osuna D, Scheible W-R, Carillo P, Hajirezaei M-R, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in <em>Arabidopsis thaliana</em>. Biochem J 397:139–148PubMedPubMedCentralCrossRefGoogle Scholar
  60. Luo Y, Li W-M, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63:378–384CrossRefGoogle Scholar
  61. Lutts S, Kinet JM, Bouharmont J (1995) Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J Exp Bot 46:1843–1852CrossRefGoogle Scholar
  62. Magnes C, Fauland A, Gander E, Narath S, Ratzer M, Eisenberg T, Madeo F, Pieber T, Sinner F (2014) Polyamines in biological samples: rapid and robust quantification by solid-phase extraction online-coupled to liquid chromatography–tandem mass spectrometry. J Chromatogr A 1331:44–51PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500CrossRefGoogle Scholar
  64. Martínez Montero C, Rodríguez Dodero MC, Guillén Sánchez DA, Barroso CG (2004) Analysis of low molecular weight carbohydrates in food and beverages: a review. Chromatographia 59:15–30Google Scholar
  65. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mazza G, Miniati E (1993) Anthocyanins in fruits, vegetables and grains. CRC Press, LondonGoogle Scholar
  67. Mechri B, Tekaya M, Cheheb H, Hammami M (2015) Determination of mannitol sorbitol and myo-inositol in olive tree roots and rhizospheric soil by gas chromatography and effect of severe drought conditions on their profiles. J Chromatogr Sci 53:1631–1638PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274PubMedCrossRefPubMedCentralGoogle Scholar
  69. Molina-Rueda J, Garrido-Aranda A, Gallardo F (2015) Glutamate decarboxylase. In: D’ Mello J (ed) Amino acids in higher plants. CAB International, Wallingford, pp 129–141Google Scholar
  70. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250CrossRefPubMedGoogle Scholar
  71. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nasir FA, Batarseh M, Abdel-Ghani AH, Jiries A (2010) Free amino acids content in some halophytes under salinity stress in arid environment, Jordan. CLEAN Soil Air Water 38:592–600Google Scholar
  73. Nedjimi B (2014) Effects of salinity on growth, membrane permeability and root hydraulic conductivity in three saltbush species. Biochem Syst Ecol 52:4–13CrossRefGoogle Scholar
  74. Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11PubMedCrossRefGoogle Scholar
  75. Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69:3225–3243PubMedPubMedCentralCrossRefGoogle Scholar
  76. Oksman-Caldentey K-M, Inzé D, Orešič M (2004) Connecting genes to metabolites by a systems biology approach. Proc Natl Acad Sci U S A 101:9949–9950PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pires MV, Pereira Júnior AA, Medeiros DB, Daloso DM, Pham PA, Barros KA, Engqvist MKM, Florian A, Krahnert I, Maurino VG, Araújo WL, Fernie AR (2016) The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant Cell Environ 39:1304–1319PubMedCrossRefPubMedCentralGoogle Scholar
  78. Quinet M, Ndayiragije A, Lefèvre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J Exp Bot 61:2719–2733PubMedPubMedCentralCrossRefGoogle Scholar
  79. Raessler M (2011) Sample preparation and current applications of liquid chromatography for the determination of non-structural carbohydrates in plants. Trends Anal Chem 30:1833–1843CrossRefGoogle Scholar
  80. Ramautar R, Somsen GW, de Jong GJ (2017) CE–MS for metabolomics: developments and applications in the period 2014–2016. Electrophoresis 38:190–202PubMedCrossRefPubMedCentralGoogle Scholar
  81. Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13:125–153CrossRefGoogle Scholar
  82. Raven JA (1985) Tansley review no. 2. Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77CrossRefGoogle Scholar
  83. Renault H, El Amrani A, Berger A, Mouille G, Soubigou-Taconnat L, Bouchereau A, Deleu C (2013) γ-aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell Environ 36:1009–1018PubMedCrossRefPubMedCentralGoogle Scholar
  84. Rhodes D, Hanson A (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384CrossRefGoogle Scholar
  85. Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars—metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4:388–393PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ruiz-Matute AI, Hernández-Hernández O, Rodríguez-Sánchez S, Sanz ML, Martínez-Castro I (2011) Derivatization of carbohydrates for GC and GC–MS analyses. J Chromatogr B 879:1226–1240CrossRefGoogle Scholar
  87. Sairam R, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421Google Scholar
  88. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171PubMedCrossRefPubMedCentralGoogle Scholar
  89. Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132:209–219PubMedPubMedCentralGoogle Scholar
  90. Sanchez DH, Pieckenstain FL, Szymanski J, Erban A, Bromke M, Hannah MA, Kraemer U, Kopka J, Udvardi MK (2011) Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS One 6:e17094PubMedPubMedCentralCrossRefGoogle Scholar
  91. Schuhmacher R, Krska R, Weckwerth W, Goodacre R (2013) Metabolomics and metabolite profiling. Anal Bioanal Chem 405:5003–5004PubMedCrossRefPubMedCentralGoogle Scholar
  92. Schwab W (2003) Metabolome diversity: too few genes, too many metabolites? Phytochemistry 62:837–849PubMedCrossRefPubMedCentralGoogle Scholar
  93. Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptive mechanisms. CAB, UKGoogle Scholar
  94. Shahaf N, Rogachev I, Heinig U, Meir S, Malitsky S, Battat M, Wyner H, Zheng S, Wehrens R, Aharoni A (2016) The WEIZMASS spectral library for high-confidence metabolite identification. Nat Commun 7:12423PubMedPubMedCentralCrossRefGoogle Scholar
  95. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131PubMedCrossRefPubMedCentralGoogle Scholar
  96. Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208PubMedCrossRefPubMedCentralGoogle Scholar
  97. Signorelli S, Dans PD, Coitiño EL, Borsani O, Monza J (2015) Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions. PLoS One 10:e0115349PubMedPubMedCentralCrossRefGoogle Scholar
  98. Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447PubMedPubMedCentralCrossRefGoogle Scholar
  99. Stitt M, Fernie AR (2003) From measurements of metabolites to metabolomics: an ‘on the fly’ perspective illustrated by recent studies of carbon–nitrogen interactions. Curr Opin Biotechnol 14:136–144PubMedCrossRefPubMedCentralGoogle Scholar
  100. Thiele B, Stein N, Oldiges M, Hofmann D (2012) Direct analysis of underivatized amino acids in plant extracts by LC-MS-MS. In: Alterman MA, Hunziker P (eds) Amino acid analysis: methods and protocols. Humana Press, Totowa, pp 317–328CrossRefGoogle Scholar
  101. Trethewey RN (2004) Metabolite profiling as an aid to metabolic engineering in plants. Curr Opin Plant Biol 7:196–201PubMedCrossRefPubMedCentralGoogle Scholar
  102. Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660PubMedPubMedCentralGoogle Scholar
  103. Tuomivaara ST, Yaoi K, O’Neill MA, York WS (2015) Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydr Res 402:56–66PubMedCrossRefPubMedCentralGoogle Scholar
  104. Villas-Bôas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wakayama M, Hirayama A, Soga T (2015) Capillary electrophoresis-mass spectrometry. In: Bjerrum JT (ed) Metabonomics: methods and protocols. Springer, New York, pp 113–122Google Scholar
  106. Waldhier MC, Dettmer K, Gruber MA, Oefner PJ (2010) Comparison of derivatization and chromatographic methods for GC–MS analysis of amino acid enantiomers in physiological samples. J Chromatogr B 878:1103–1112CrossRefGoogle Scholar
  107. Wang H, Liu D, Sun J, Zhang A (2005) Asparagine synthetase gene TaASN1 from wheat is up-regulated by salt stress, osmotic stress and ABA. J Plant Physiol 162:81–89PubMedCrossRefPubMedCentralGoogle Scholar
  108. Wang Y, Gu W, Meng Y, Xie T, Li L, Li J, Wei S (2017) γ-aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants. Sci Rep 7:43609PubMedPubMedCentralCrossRefGoogle Scholar
  109. Weckwerth W, Wenzel K, Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83PubMedCrossRefPubMedCentralGoogle Scholar
  110. Woodrow P, Pontecorvo G, Fantaccione S, Fuggi A, Kafantaris I, Parisi D, Carillo P (2010) Polymorphism of a new Ty1-copia retrotransposon in durum wheat under salt and light stresses. Theor Appl Genet 121:311–322PubMedCrossRefPubMedCentralGoogle Scholar
  111. Woodrow P, Pontecorvo G, Ciarmiello LF, Fuggi A, Carillo P (2011) Ttd1a promoter is involved in DNA–protein binding by salt and light stresses. Mol Biol Rep 38:3787–3794PubMedCrossRefPubMedCentralGoogle Scholar
  112. Woodrow P, Pontecorvo G, Ciarmiello LF, Annunziata MG, Fuggi A, Carillo P (2012) Transcription factors and genes in abiotic stress. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 317–357CrossRefGoogle Scholar
  113. Woodrow P, Ciarmiello LF, Annunziata MG, Pacifico S, Iannuzzi F, Mirto A, D'Amelia L, Dell’Aversana E, Piccolella S, Fuggi A, Carillo P (2017) Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism. Physiol Plant 159:290–312PubMedCrossRefGoogle Scholar
  114. Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 8:e55431PubMedPubMedCentralCrossRefGoogle Scholar
  115. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830PubMedCrossRefPubMedCentralGoogle Scholar
  116. Yin Y-G, Kobayashi Y, Sanuki A, Kondo S, Fukuda N, Ezura H, Sugaya S, Matsukura C (2010) Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. J Exp Bot 61:563–574PubMedCrossRefPubMedCentralGoogle Scholar
  117. Zhang H, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zhang JT, Zhang Y, Du YY, Chen SY, Tang HR (2011) Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res 10:1904–1914PubMedCrossRefPubMedCentralGoogle Scholar
  119. Zhao L, Chanon AM, Chattopadhyay N, Dami IE, Blakeslee JJ (2016) Quantification of carbohydrates in grape tissues using capillary zone electrophoresis. Front Plant Sci 7:818PubMedPubMedCentralGoogle Scholar
  120. Zuther E, Koehl K, Kopka J (2007) Comparative metabolome analysis of the salt response in breeding cultivars of rice. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerance crops. Springer, Berlin, pp 285–315CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luisa D’Amelia
    • 1
  • Emilia Dell’Aversana
    • 1
  • Pasqualina Woodrow
    • 1
  • Loredana F. Ciarmiello
    • 1
  • Petronia Carillo
    • 1
    Email author
  1. 1.Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e FarmaceuticheUniversità degli Studi della Campania “Luigi Vanvitelli”CasertaItaly

Personalised recommendations