Advertisement

Hemolytic Uremic Syndrome

  • Uma Ali
  • Bradley P. Dixon
Chapter

Abstract

Hemolytic uremic syndrome (HUS) is a triad of thrombocytopenia, microangiopathic hemolysis, and acute kidney injury, within the broader category of thrombotic microangiopathy (TMA). The most common form of HUS in children is due to Shigatoxin-producing E. coli infection, although other forms due to invasive pneumococcal disease, genetic defects in complement regulation, and cobalamin C metabolism also occur. As the many forms of TMA share overlapping clinical features through the common pathomechanism of endothelial cell injury, laboratory investigation is warranted to provide additional diagnostic insight. Secondary forms of TMA also share clinical features with HUS, and although uncommon in children, should be excluded by careful assessment of the patient’s history and laboratory evaluation.

Keywords

Hemolytic uremic syndrome STEC-HUS Pneumococcal HUS aHUS Complement Thrombotic Microangiopathy 

References

  1. 1.
    Moake JL. Thrombotic microangiopathies. N Engl J Med. 2002;347(8):589–600.CrossRefPubMedGoogle Scholar
  2. 2.
    Laurence J, et al. Atypical hemolytic uremic syndrome (aHUS): essential aspects of an accurate diagnosis. Clin Adv Hematol Oncol. 2016;14(Suppl 11(11)):2–15.PubMedGoogle Scholar
  3. 3.
    Gilmour MW, et al. Isolation and detection of Shiga toxin-producing Escherichia coli in clinical stool samples using conventional and molecular methods. J Med Microbiol. 2009;58(Pt 7):905–11.CrossRefPubMedGoogle Scholar
  4. 4.
    Leszczynska B, et al. Diagnostic value of serological tests against verotoxigenic Escherichia coli in hemolytic uremic syndrome in children. Adv Clin Exp Med. 2015;24(6):1031–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Gould LH, et al. Recommendations for diagnosis of Shiga toxin--producing Escherichia coli infections by clinical laboratories. MMWR Recomm Rep. 2009;58(RR-12):1–14.PubMedGoogle Scholar
  6. 6.
    Copelovitch L, Kaplan BS. Streptococcus pneumoniae-associated hemolytic uremic syndrome. Pediatr Nephrol. 2008;23(11):1951–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Loirat C, et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2016;31(1):15–39.CrossRefGoogle Scholar
  8. 8.
    Fakhouri F, et al. Haemolytic uraemic syndrome. Lancet. 2017;390(10095):681–96.CrossRefPubMedGoogle Scholar
  9. 9.
    Mody RK, et al. Infections in pediatric postdiarrheal hemolytic uremic syndrome: factors associated with identifying Shiga toxin-producing Escherichia coli. Arch Pediatr Adolesc Med. 2012;166(10):902–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Kielstein JT, et al. Best supportive care and therapeutic plasma exchange with or without eculizumab in Shiga-toxin-producing E coli O104:H4 induced haemolytic-uraemic syndrome: an analysis of the German STEC-HUS registry. Nephrol Dial Transplant. 2012;27(10):3807–15.CrossRefPubMedGoogle Scholar
  11. 11.
    Paton JC, Paton AW. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin Microbiol Rev. 1998;11(3):450–79.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Thorpe CM. Shiga toxin-producing Escherichia coli infection. Clin Infect Dis. 2004;38(9):1298–303.CrossRefPubMedGoogle Scholar
  13. 13.
    Andreoli SP, et al. Hemolytic uremic syndrome: epidemiology, pathophysiology, and therapy. Pediatr Nephrol. 2002;17(4):293–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Orth D, et al. Shiga toxin activates complement and binds factor H: evidence for an active role of complement in hemolytic uremic syndrome. J Immunol. 2009;182(10):6394–400.CrossRefPubMedGoogle Scholar
  15. 15.
    Thurman JM, et al. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2009;4(12):1920–4.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Starr M, et al. Hemolytic-uremic syndrome following urinary tract infection with enterohemorrhagic Escherichia coli: case report and review. Clin Infect Dis. 1998;27(2):310–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Grisaru S, et al. Associations between hydration status, intravenous fluid administration, and outcomes of patients infected with Shiga toxin-producing Escherichia coli: a systematic review and meta-analysis. JAMA Pediatr. 2017;171(1):68–76.CrossRefPubMedGoogle Scholar
  18. 18.
    Ardissino G, et al. Early volume expansion and outcomes of hemolytic uremic syndrome. Pediatrics. 2016;137(1):e20152153.CrossRefGoogle Scholar
  19. 19.
    Wong CS, et al. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N Engl J Med. 2000;342(26):1930–6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ikeda K, et al. Effect of early fosfomycin treatment on prevention of hemolytic uremic syndrome accompanying Escherichia coli O157:H7 infection. Clin Nephrol. 1999;52(6):357–62.PubMedGoogle Scholar
  21. 21.
    Freedman SB, et al. Shiga toxin-producing Escherichia coli infection, antibiotics, and risk of developing hemolytic uremic syndrome: a meta-analysis. Clin Infect Dis. 2016;62(10):1251–8.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Goel R, et al. Platelet transfusions in platelet consumptive disorders are associated with arterial thrombosis and in-hospital mortality. Blood. 2015;125(9):1470–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Balestracci A, et al. Impact of platelet transfusions in children with post-diarrheal hemolytic uremic syndrome. Pediatr Nephrol. 2013;28(6):919–25.CrossRefPubMedGoogle Scholar
  24. 24.
    Menne J, et al. Validation of treatment strategies for enterohaemorrhagic Escherichia coli O104:H4 induced haemolytic uraemic syndrome: case-control study. BMJ. 2012;345:e4565.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lapeyraque AL, et al. Eculizumab in severe Shiga-toxin-associated HUS. N Engl J Med. 2011;364(26):2561–3.CrossRefPubMedGoogle Scholar
  26. 26.
    Pape L, et al. Eculizumab in typical hemolytic uremic syndrome (HUS) with neurological involvement. Medicine (Baltimore). 2015;94(24):e1000.CrossRefPubMedGoogle Scholar
  27. 27.
    Loos S, et al. Intermediate follow-up of pediatric patients with hemolytic uremic syndrome during the 2011 outbreak caused by E. Coli O104:H4. Clin Infect Dis. 2017;64(12):1637–43.CrossRefPubMedGoogle Scholar
  28. 28.
    Trachtman H, et al. Effect of an oral Shiga toxin-binding agent on diarrhea-associated hemolytic uremic syndrome in children: a randomized controlled trial. JAMA. 2003;290(10):1337–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Garg AX, et al. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA. 2003;290(10):1360–70.CrossRefPubMedGoogle Scholar
  30. 30.
    Weintraub L, et al. Management of streptococcal pneumoniae-induced hemolytic uremic syndrome: a case report. Clin Nephrol Case Stud. 2014;2:9–17.PubMedPubMedCentralGoogle Scholar
  31. 31.
    George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371(7):654–66.CrossRefPubMedGoogle Scholar
  32. 32.
    Loirat C, Fremeaux-Bacchi V. Atypical hemolytic uremic syndrome. Orphanet J Rare Dis. 2011;6:60.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Licht C, et al. The global aHUS registry: methodology and initial patient characteristics. BMC Nephrol. 2015;16:207.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Noris M, et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol. 2010;5(10):1844–59.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Delvaeye M, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361(4):345–57.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fremeaux-Bacchi V, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008;112(13):4948–52.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Goicoechea de Jorge E, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2007;104(1):240–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Dragon-Durey MA, et al. Anti-factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2005;16(2):555–63.CrossRefPubMedGoogle Scholar
  39. 39.
    Jozsi M, et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood. 2008;111(3):1512–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Lemaire M, et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet. 2013;45(5):531–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bu F, et al. Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome. J Am Soc Nephrol. 2014;25(1):55–64.CrossRefPubMedGoogle Scholar
  42. 42.
    Nester CM, et al. Atypical aHUS: state of the art. Mol Immunol. 2015;67(1):31–42.CrossRefPubMedGoogle Scholar
  43. 43.
    Cataland SR, et al. Biomarkers of the alternative pathway and terminal complement activity at presentation confirms the clinical diagnosis of aHUS and differentiates aHUS from TTP. Blood. 2014;123(24):3733–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Reti M, et al. Complement activation in thrombotic thrombocytopenic purpura. J Thromb Haemost. 2012;10(5):791–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Noris M, et al. Dynamics of complement activation in aHUS and how to monitor eculizumab therapy. Blood. 2014;124(11):1715–26.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gavriilaki E, et al. Modified Ham test for atypical hemolytic uremic syndrome. Blood. 2015;125(23):3637–46.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Michael M, et al. Interventions for haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura. Cochrane Database Syst Rev. 2009;1:CD003595.Google Scholar
  48. 48.
    Krishnappa V, et al. Atypical hemolytic uremic syndrome: a meta-analysis of case reports confirms the prevalence of genetic mutations and the shift of treatment regimens. Ther Apher Dial. 2018;22(2):178–88.CrossRefPubMedGoogle Scholar
  49. 49.
    Schwartz J, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the writing Committee of the American Society for apheresis: the seventh special issue. J Clin Apher. 2016;31(3):149–62.PubMedGoogle Scholar
  50. 50.
    Gruppo RA, Rother RP. Eculizumab for congenital atypical hemolytic-uremic syndrome. N Engl J Med. 2009;360(5):544–6.CrossRefGoogle Scholar
  51. 51.
    Legendre CM, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368(23):2169–81.CrossRefPubMedGoogle Scholar
  52. 52.
    Licht C, et al. Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies. Kidney Int. 2015;87(5):1061–73.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Simonetti D, et al. Eculizumab therapy for atypical hemolytic uremic syndrome in pediatric patients: efficacy and safety outcomes from a retrospective study. Haematologica. 2011;96(Suppl 2):165.Google Scholar
  54. 54.
    Greenbaum LA, et al. Eculizumab is a safe and effective treatment in pediatric patients with atypical hemolytic uremic syndrome. Kidney Int. 2016;89(3):701–11.CrossRefPubMedGoogle Scholar
  55. 55.
    Wehling C, et al. Monitoring of complement activation biomarkers and eculizumab in complement-mediated renal disorders. Clin Exp Immunol. 2017;187(2):304–15.CrossRefPubMedGoogle Scholar
  56. 56.
    Ardissino G, et al. Discontinuation of eculizumab treatment in atypical hemolytic uremic syndrome: an update. Am J Kidney Dis. 2015;66(1):172–3.CrossRefPubMedGoogle Scholar
  57. 57.
    Saland J. Liver-kidney transplantation to cure atypical HUS: still an option post-eculizumab? Pediatr Nephrol. 2014;29(3):329–32.CrossRefPubMedGoogle Scholar
  58. 58.
    Masias C, Vasu S, Cataland SR. None of the above: thrombotic microangiopathy beyond TTP and HUS. Blood. 2017;129(21):2857–63.CrossRefPubMedGoogle Scholar
  59. 59.
    Copelovitch L, Kaplan BS. The thrombotic microangiopathies. Pediatr Nephrol. 2008;23(10):1761–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Barrera-Vargas A, et al. Renal thrombotic Microangiopathy in proliferative lupus nephritis: risk factors and clinical outcomes: a case-control study. J Clin Rheumatol. 2016;22(5):235–40.CrossRefPubMedGoogle Scholar
  61. 61.
    Torok KS. Pediatric scleroderma: systemic or localized forms. Pediatr Clin N Am. 2012;59(2):381–405.CrossRefGoogle Scholar
  62. 62.
    Guillevin L, et al. Scleroderma renal crisis: a retrospective multicentre study on 91 patients and 427 controls. Rheumatology (Oxford). 2012;51(3):460–7.CrossRefGoogle Scholar
  63. 63.
    Berman H, et al. Pediatric catastrophic antiphospholipid syndrome: descriptive analysis of 45 patients from the “CAPS registry”. Autoimmun Rev. 2014;13(2):157–62.CrossRefPubMedGoogle Scholar
  64. 64.
    Mathew RO, Nayer A, Asif A. The endothelium as the common denominator in malignant hypertension and thrombotic microangiopathy. J Am Soc Hypertens. 2016;10(4):352–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Timmermans S, et al. Patients with hypertension-associated thrombotic microangiopathy may present with complement abnormalities. Kidney Int. 2017;91(6):1420–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatric NephrologyBai Jerbai Wadia Hospital and Institute of Child HealthMumbaiIndia
  2. 2.Renal Section, Department of PediatricsUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations