Nutrition in a Child with Acute Kidney Injury and on CRRT

  • Michael Zappitelli
  • Timothy E. Bunchman


Critically ill children are at high risk for malnutrition. In the last 10 years, the importance of nutrition on clinical outcomes has been increasingly appreciated. For many reasons, children with acute kidney injury (AKI) are a high-risk group for malnutrition during critical illness. This problem is magnified by nutritional losses in children treated with renal replacement therapy for AKI. This chapter provides an overview of assessment of nutrition status, energy, protein, trace elements, and vitamin intake in patients with AKI, in the context of what is known in critical illness nutrition.


Acute renal failure Feeding Critical illness Dialysis Vitamins Trace elements Energy expenditure Proteins Amino acids 


  1. 1.
    Hulst JM, van Goudoever JB, Zimmermann LJ, Hop WC, Albers MJ, Tibboel D, et al. The effect of cumulative energy and protein deficiency on anthropometric parameters in a pediatric ICU population. Clin Nutr. 2004;23(6):1381–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Sethi SK, Maxvold N, Bunchman T, Jha P, Kher V, Raina R. Nutritional management in the critically ill child with acute kidney injury: a review. Pediatr Nephrol. 2017;32(4):589–601.CrossRefPubMedGoogle Scholar
  3. 3.
    Mehta NM, Skillman HE, Irving SY, Coss-Bu JA, Vermilyea S, Farrington EA, et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr Crit Care Med. 2017;18(7):675–715.CrossRefPubMedGoogle Scholar
  4. 4.
    Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ. Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values. Am J Clin Nutr. 1998;67(1):74–80.CrossRefPubMedGoogle Scholar
  5. 5.
    Owens JL, Musa N. Nutrition support after neonatal cardiac surgery. Nutr Clin Pract. 2009;24(2):242–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Castillo A, Santiago MJ, Lopez-Herce J, Montoro S, Lopez J, Bustinza A, et al. Nutritional status and clinical outcome of children on continuous renal replacement therapy: a prospective observational study. BMC Nephrol. 2012;13:125.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kyle UG, Akcan-Arikan A, Orellana RA, Coss-Bu JA. Nutrition support among critically ill children with AKI. Clin J Am Soc Nephrol. 2013;8(4):568–74.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zappitelli M, Goldstein SL, Symons JM, Somers MJ, Baum MA, Brophy PD, et al. Protein and calorie prescription for children and young adults receiving continuous renal replacement therapy: a report from the prospective pediatric continuous renal replacement therapy registry group. Crit Care Med. 2008;36(12):3239–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Martinez EE, Mehta NM. The science and art of pediatric critical care nutrition. Curr Opin Crit Care. 2016;22(4):316–24.CrossRefPubMedGoogle Scholar
  10. 10.
    Mitting R, Marino L, Macrae D, Shastri N, Meyer R, Pathan N. Nutritional status and clinical outcome in postterm neonates undergoing surgery for congenital heart disease. Pediatr Crit Care Med. 2015;16(5):448–52.CrossRefPubMedGoogle Scholar
  11. 11.
    Mehta NM, Bechard LJ, Cahill N, Wang M, Day A, Duggan CP, et al. Nutritional practices and their relationship to clinical outcomes in critically ill children--an international multicenter cohort study*. Crit Care Med. 2012;40(7):2204–11.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mehta NM, Bechard LJ, Zurakowski D, Duggan CP, Heyland DK. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr. 2015;102(1):199–206.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mehta NM, Corkins MR, Lyman B, Malone A, Goday PS, Carney LN, et al. Defining pediatric malnutrition: a paradigm shift toward etiology-related definitions. JPEN J Parenter Enteral Nutr. 2013;37(4):460–81.CrossRefPubMedGoogle Scholar
  14. 14.
    Coss-Bu JA, Hamilton-Reeves J, Patel JJ, Morris CR, Hurt RT. Protein requirements of the critically ill pediatric patient. Nutr Clin Pract. 2017;32(1_suppl):128S–41S.CrossRefPubMedGoogle Scholar
  15. 15.
    Kyle UG, Earthman CP, Pichard C, Coss-Bu JA. Body composition during growth in children: limitations and perspectives of bioelectrical impedance analysis. Eur J Clin Nutr. 2015;69(12):1298–305.CrossRefPubMedGoogle Scholar
  16. 16.
    Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, et al. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15(3):R146.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Leroue MK, Good RJ, Skillman HE, Czaja AS. Enteral nutrition practices in critically ill children requiring noninvasive positive pressure ventilation. Pediatr Crit Care Med. 2017;18:1093.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee JH, Rogers E, Chor YK, Samransamruajkit R, Koh PL, Miqdady M, et al. Optimal nutrition therapy in paediatric critical care in the Asia-Pacific and Middle East: a consensus. Asia Pac J Clin Nutr. 2016;25(4):676–96.PubMedGoogle Scholar
  19. 19.
    Kidney Disease: Improving Global Outcomes Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for acute kidney injury. Kidney Int. 2012;2(Suppl):1–138.Google Scholar
  20. 20.
    Sabatino A, Regolisti G, Maggiore U, Fiaccadori E. Protein/energy debt in critically ill children in the pediatric intensive care unit: acute kidney injury as a major risk factor. J Ren Nutr. 2014;24(4):209–18.CrossRefPubMedGoogle Scholar
  21. 21.
    Fivez T, Kerklaan D, Mesotten D, Verbruggen S, Wouters PJ, Vanhorebeek I, et al. Early versus late parenteral nutrition in critically ill children. N Engl J Med. 2016;374(12):1111–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Lopez-Herce J, Sanchez C, Carrillo A, Mencia S, Santiago MJ, Bustinza A, et al. Transpyloric enteral nutrition in the critically ill child with renal failure. Intensive Care Med. 2006;32(10):1599–605.CrossRefPubMedGoogle Scholar
  23. 23.
    Coss-Bu JA, Jefferson LS, Walding D, David Y, Smith EO, Klish WJ. Resting energy expenditure and nitrogen balance in critically ill pediatric patients on mechanical ventilation. Nutrition. 1998;14(9):649–52.CrossRefPubMedGoogle Scholar
  24. 24.
    White MS, Shepherd RW, McEniery JA. Energy expenditure in 100 ventilated, critically ill children: improving the accuracy of predictive equations. Crit Care Med. 2000;28(7):2307–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Hauschild DB, Ventura JC, Mehta NM, Moreno YMF. Impact of the structure and dose of protein intake on clinical and metabolic outcomes in critically ill children: a systematic review. Nutrition. 2017;41:97–106.CrossRefPubMedGoogle Scholar
  26. 26.
    Mehta NM, Compher C, Directors ASPENBo. A.S.P.E.N. Clinical guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr. 2009;33(3):260–76.CrossRefPubMedGoogle Scholar
  27. 27.
    Coss-Bu JA, Klish WJ, Walding D, Stein F, Smith EO, Jefferson LS. Energy metabolism, nitrogen balance, and substrate utilization in critically ill children. Am J Clin Nutr. 2001;74(5):664–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kuttnig M, Zobel G, Ring E, Grubbauer HM, Kurz R. Nitrogen and amino acid balance during total parenteral nutrition and continuous arteriovenous hemofiltration in critically ill anuric children. Child Nephrol Urol. 1991;11(2):74–8.PubMedGoogle Scholar
  29. 29.
    Maxvold NJ, Smoyer WE, Custer JR, Bunchman TE. Amino acid loss and nitrogen balance in critically ill children with acute renal failure: a prospective comparison between classic hemofiltration and hemofiltration with dialysis. Crit Care Med. 2000;28(4):1161–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Phan V, Clermont MJ, Merouani A, Litalien C, Tucci M, Lambert M, et al. Duration of extracorporeal therapy in acute maple syrup urine disease: a kinetic model. Pediatr Nephrol. 2006;21(5):698–704.CrossRefPubMedGoogle Scholar
  31. 31.
    Zappitelli M, Juarez M, Castillo L, Coss-Bu J, Goldstein SL. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children. Intensive Care Med. 2009;35(4):698–706.CrossRefPubMedGoogle Scholar
  32. 32.
    Quan A, Baum M. Protein losses in children on continuous cycler peritoneal dialysis. Pediatr Nephrol. 1996;10(6):728–31.CrossRefPubMedGoogle Scholar
  33. 33.
    Dao DT, Anez-Bustillos L, Cho BS, Li Z, Puder M, Gura KM. Assessment of micronutrient status in critically ill children: challenges and opportunities. Nutrients. 2017;9(11):E1185.CrossRefPubMedGoogle Scholar
  34. 34.
    Fiaccadori E, Regolisti G, Cabassi A. Specific nutritional problems in acute kidney injury, treated with non-dialysis and dialytic modalities. NDT Plus. 2010;3(1):1–7.PubMedGoogle Scholar
  35. 35.
    Sgambat K, Moudgil A. Carnitine deficiency in children receiving continuous renal replacement therapy. Hemodial Int. 2016;20(1):63–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Michael Zappitelli
    • 1
  • Timothy E. Bunchman
    • 2
  1. 1.Department of Pediatrics, Division of NephrologyToronto Hospital for Sick ChildrenTorontoCanada
  2. 2.Department of PediatricsPediatric Nephrology, Virginia Commonwealth UniversityRichmondUSA

Personalised recommendations