Inflammation and Ischemic Stroke

  • Junwei HaoEmail author
  • Kai Zheng
  • Heng Zhao
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Stroke is the leading cause of death and disability worldwide (Shan and Guo, BMC Neurol 17:33, 2017). Neuroinflammation plays a significant role in the pathogenesis of stroke. In this chapter, we will first review the initial factors that trigger neuroinflammation in the ischemic brain. We will then summarize the main molecules involved in neuroinflammation after stroke as well as the major inflammatory cells derived from brain resident cells and circulating blood. In addition, we will discuss the relationship between post-ischemic inflammation and brain repairs. Lastly, anti-inflammatory therapies will be summarized. The aim of this chapter is not to meticulously review all of the abovementioned aspects, but to provide an overview of the essential components to understand neuroinflammation after stroke.


Ischemic stroke Inflammatory cell Blood vessels Inflammatory mediator 


  1. 1.
    Shan K, Guo W. Stroke caused by an inflammatory thrombus: a case report. BMC Neurol. 2017;17(1):33.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Silverman MG, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA. 2016;316(12):1289–97.CrossRefPubMedGoogle Scholar
  3. 3.
    Bragg F, et al. Association between diabetes and cause-specific mortality in rural and urban areas of China. JAMA. 2017;317(3):280–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Fucikova J, et al. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood. 2016;128(26):3113–24.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Choi HW, Klessig DF. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol. 2016;16(1):232.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Thoudam T, et al. Role of mitochondria-associated endoplasmic reticulum membrane in inflammation-mediated metabolic diseases. Mediat Inflamm. 2016;2016:1851420.CrossRefGoogle Scholar
  7. 7.
    Santos SC, et al. Immunomodulation after ischemic stroke: potential mechanisms and implications for therapy. Crit Care. 2016;20(1):391.CrossRefGoogle Scholar
  8. 8.
    Nakayama T. An inflammatory response is essential for the development of adaptive immunity-immunogenicity and immunotoxicity. Vaccine. 2016;34(47):5815–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Versluys M, Tarkowski LP, Van den Ende W. Fructans as DAMPs or MAMPs: evolutionary prospects, cross-tolerance, and multistress resistance potential. Front Plant Sci. 2016;7:2061.PubMedGoogle Scholar
  10. 10.
    Lu L, et al. Innate immune regulations and liver ischemia-reperfusion injury. Transplantation. 2016;100(12):2601–10.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gougeon ML, et al. HMGB1/anti-HMGB1 antibodies define a molecular signature of early stages of HIV-associated neurocognitive disorders (HAND). Heliyon. 2017;3(2):e00245.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang Y, et al. Cigarette smoke attenuates phagocytic ability of macrophages through down-regulating Milk fat globule-EGF factor 8 (MFG-E8) expressions. Sci Rep. 2017;7:42642.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu Y, et al. Blockade of HMGB1 preserves vascular homeostasis and improves blood perfusion in rats of acute limb ischemia/reperfusion. Microvasc Res. 2017;112:37–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Ji Y, et al. Temporal pattern of Toll-like receptor 9 upregulation in neurons and glial cells following cerebral ischemia reperfusion in mice. Int J Neurosci. 2016;126(3):269–77.CrossRefPubMedGoogle Scholar
  15. 15.
    Olsson S, Jood K. Genetic variation in the receptor for advanced glycation end-products (RAGE) gene and ischaemic stroke. Eur J Neurol. 2013;20(6):991–3.CrossRefPubMedGoogle Scholar
  16. 16.
    Vidale S, et al. Postischemic inflammation in acute stroke. J Clin Neurol. 2017;13(1):1–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee GA, et al. Interleukin 15 activates Akt to protect astrocytes from oxygen glucose deprivation-induced cell death. Cytokine. 2017;92:68–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Bronisz E, Kurkowska-Jastrzebska I. Matrix metalloproteinase 9 in epilepsy: the role of neuroinflammation in seizure development. Mediat Inflamm. 2016;2016:7369020.CrossRefGoogle Scholar
  19. 19.
    Li N, et al. Bidirectional relationship of mast cells-neurovascular unit communication in neuroinflammation and its involvement in POCD. Behav Brain Res. 2017;322(Pt A):60–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Mijajlovic MD, et al. Post-stroke dementia – a comprehensive review. BMC Med. 2017;15(1):11.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shukla V, et al. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation. 2017;14(1):21.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang Y, et al. Effects of Shaoyao-Gancao decoction on infarcted cerebral cortical neurons: suppression of the inflammatory response following cerebral ischemia-reperfusion in a rat model. Biomed Res Int. 2016;2016:1859254.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Guo X, et al. miR-145 mediated the role of aspirin in resisting VSMCs proliferation and anti-inflammation through CD40. J Transl Med. 2016;14(1):211.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kojima Y, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536(7614):86–90.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Elkind MS, et al. The levels of inflammatory markers in the treatment of stroke study (LIMITS): inflammatory biomarkers as risk predictors after lacunar stroke. Int J Stroke. 2010;5(2):117–25.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Reaux-Le GA, et al. Current status of chemokines in the adult CNS. Prog Neurobiol. 2013;104:67–92.CrossRefGoogle Scholar
  27. 27.
    Wacker BK, Perfater JL, Gidday JM. Hypoxic preconditioning induces stroke tolerance in mice via a cascading HIF, sphingosine kinase, and CCL2 signaling pathway. J Neurochem. 2012;123(6):954–62.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kwon MJ, Yoon HJ, Kim BG. Regeneration-associated macrophages: a novel approach to boost intrinsic regenerative capacity for axon regeneration. Neural Regen Res. 2016;11(9):1368–71.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Zemer-Wassercug N, et al. The effect of dabigatran and rivaroxaban on platelet reactivity and inflammatory markers. J Thromb Thrombolysis. 2015;40(3):340–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Sajedi KM, et al. Correlation of early and late ejection fractions with CCL5 and CCL18 levels in acute anterior myocardial infarction. Iran J Immunol. 2016;13(2):100–13.Google Scholar
  31. 31.
    Rom S, et al. miR-98 and let-7g* protect the blood-brain barrier under neuroinflammatory conditions. J Cereb Blood Flow Metab. 2015;35(12):1957–65.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang XH, You YP. Epigallocatechin gallate extends therapeutic window of recombinant tissue plasminogen activator treatment for brain ischemic stroke: a randomized double-blind and placebo-controlled trial. Clin Neuropharmacol. 2017;40(1):24–8.PubMedGoogle Scholar
  33. 33.
    Zhang HT, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15(1):57–64.CrossRefPubMedGoogle Scholar
  34. 34.
    Kanazawa M, et al. Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke. J Atheroscler Thromb. 2017;24(3):240–53.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fujioka T, et al. Beta1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain. EBioMedicine. 2017;16:195–203.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rom S, et al. PARP inhibition in leukocytes diminishes inflammation via effects on integrins/cytoskeleton and protects the blood-brain barrier. J Neuroinflammation. 2016;13(1):254.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Xu XR, et al. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J. 2016;14(Suppl 1):29.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Huang H, et al. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of alpha5beta1 and alphaVbeta3 integrins. J Neuroinflammation. 2016;13(1):227.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhao J, et al. Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia. Br J Pharmacol. 2015;172(20):5009–23.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wu N, et al. Association of inflammatory and hemostatic markers with stroke and thromboembolic events in atrial fibrillation: a systematic review and meta-analysis. Can J Cardiol. 2015;31(3):278–86.CrossRefPubMedGoogle Scholar
  41. 41.
    Kurkowska-Jastrzebska I, et al. Carotid intima media thickness and blood biomarkers of atherosclerosis in patients after stroke or myocardial infarction. Croat Med J. 2016;57(6):548–57.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pusch G, et al. Early dynamics of P-selectin and interleukin 6 predicts outcomes in ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24(8):1938–47.CrossRefPubMedGoogle Scholar
  43. 43.
    Yang S, et al. Biomarkers associated with ischemic stroke in diabetes mellitus patients. Cardiovasc Toxicol. 2016;16(3):213–22.CrossRefPubMedGoogle Scholar
  44. 44.
    Guo M, et al. Polymorphisms in the receptor for advanced glycation end products gene are associated with susceptibility to drug-resistant epilepsy. Neurosci Lett. 2016;619:137–41.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang D, et al. Up-regulation of VCAM1 relates to neuronal apoptosis after intracerebral hemorrhage in adult rats. Neurochem Res. 2015;40(5):1042–52.CrossRefPubMedGoogle Scholar
  46. 46.
    Lu W, Bromley-Coolidge S, Li J. Regulation of GABAergic synapse development by postsynaptic membrane proteins. Brain Res Bull. 2017;129:30–42.CrossRefPubMedGoogle Scholar
  47. 47.
    Riehl A, et al. The receptor RAGE: bridging inflammation and cancer. Cell Commun Signal. 2009;7:12.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Schofield ZV, et al. Neutrophils—a key component of ischemia-reperfusion injury. Shock. 2013;40(6):463–70.CrossRefPubMedGoogle Scholar
  49. 49.
    Tabas I. 2016 Russell Ross memorial lecture in vascular biology: molecular-cellular mechanisms in the progression of atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37(2):183–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Altug CH, et al. Assessment of the relationship between serum vascular adhesion protein-1 (VAP-1) and severity of calcific aortic valve stenosis. J Heart Valve Dis. 2015;24(6):699–706.Google Scholar
  51. 51.
    Mandelbaum M, et al. A critical role for proinflammatory behavior of smooth muscle cells in hemodynamic initiation of intracranial aneurysm. PLoS One. 2013;8(9):e74357.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tamma G, et al. Effect of roscovitine on intracellular calcium dynamics: differential enantioselective responses. Mol Pharm. 2013;10(12):4620–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Banjara M, Ghosh C. Sterile neuroinflammation and strategies for therapeutic intervention. Int J Inflamm. 2017;2017:8385961.CrossRefGoogle Scholar
  54. 54.
    Courties G, Moskowitz MA, Nahrendorf M. The innate immune system after ischemic injury: lessons to be learned from the heart and brain. JAMA Neurol. 2014;71(2):233–6.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Pedersen DS, et al. Toxicological aspects of injectable gold-hyaluronan combination as a treatment for neuroinflammation. Histol Histopathol. 2014;29(4):447–56.PubMedGoogle Scholar
  56. 56.
    Zhang Y, et al. Treadmill exercise promotes neuroprotection against cerebral ischemia-reperfusion injury via downregulation of pro-inflammatory mediators. Neuropsychiatr Dis Treat. 2016;12:3161–73.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Perez-de-Puig I, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129(2):239–57.CrossRefPubMedGoogle Scholar
  58. 58.
    Harmon EY, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/-FcgammaRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3(6):e001232.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Yu JH, et al. Induction of neurorestoration from endogenous stem cells. Cell Transplant. 2016;25(5):863–82.CrossRefPubMedGoogle Scholar
  60. 60.
    Jarosiewicz B, et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci Transl Med. 2015;7(313):313ra179.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kaya AH, Erdogan H, Tasdemiroglu E. Searching evidences of stroke in animal models: a review of discrepancies a review of discrepancies. Turk Neurosurg. 2017;27(2):167–73.PubMedGoogle Scholar
  62. 62.
    Rossi PJ, et al. Proceedings of the third annual deep brain stimulation think tank: a review of emerging issues and technologies. Front Neurosci. 2016;10:119.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Duricki DA, et al. Delayed intramuscular human neurotrophin-3 improves recovery in adult and elderly rats after stroke. Brain. 2016;139(Pt 1):259–75.CrossRefPubMedGoogle Scholar
  64. 64.
    ElAli A, Jean LN. The role of monocytes in ischemic stroke pathobiology: new avenues to explore. Front Aging Neurosci. 2016;8:29.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Azad TD, Veeravagu A, Steinberg GK. Neurorestoration after stroke. Neurosurg Focus. 2016;40(5):E2.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Di Cesare F, et al. Phosphodiesterase-5 inhibitor PF-03049423 effect on stroke recovery: a double-blind, placebo-controlled randomized clinical trial. J Stroke Cerebrovasc Dis. 2016;25(3):642–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 2016;144:103–20.CrossRefPubMedGoogle Scholar
  68. 68.
    Popa-Wagner A, et al. Poststroke cell therapy of the aged brain. Neural Plast. 2015;2015:839638.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Wu X, et al. Long-term effectiveness of intensive therapy in chronic stroke. Neurorehabil Neural Repair. 2016;30(6):583–90.CrossRefPubMedGoogle Scholar
  70. 70.
    Amar AP, Griffin JH, Zlokovic BV. Combined neurothrombectomy or thrombolysis with adjunctive delivery of 3K3A-activated protein C in acute ischemic stroke. Front Cell Neurosci. 2015;9:344.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Choi JC, et al. Effect of pre-stroke statin use on stroke severity and early functional recovery: a retrospective cohort study. BMC Neurol. 2015;15:120.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Wood H. Migraine: migraine is associated with increased risk of perioperative ischaemic stroke. Nat Rev Neurol. 2017;13(2):67.PubMedGoogle Scholar
  73. 73.
    Sullivan R, et al. A possible new focus for stroke treatment – migrating stem cells. Expert Opin Biol Ther. 2015;15(7):949–58.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Villapol S, et al. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain. 2015;138(Pt 11):3299–315.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kongbunkiat K, et al. Leukoaraiosis, intracerebral hemorrhage, and functional outcome after acute stroke thrombolysis. Neurology. 2017;88(7):638–45.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sun L, et al. L-Serine treatment may improve neurorestoration of rats after permanent focal cerebral ischemia potentially through improvement of neurorepair. PLoS One. 2014;9(3):e93405.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Algra A, Wermer MJ. Stroke in 2016: stroke is treatable, but prevention is the key. Nat Rev Neurol. 2017;13(2):78–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Meimounn M, et al. Intensity in the neurorehabilitation of spastic paresis. Rev Neurol (Paris). 2015;171(2):130–40.CrossRefGoogle Scholar
  79. 79.
    Ruscher K, Wieloch T. The involvement of the sigma-1 receptor in neurodegeneration and neurorestoration. J Pharmacol Sci. 2015;127(1):30–5.CrossRefPubMedGoogle Scholar
  80. 80.
    Abeliovich A, Gitler AD. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature. 2016;539(7628):207–16.CrossRefPubMedGoogle Scholar
  81. 81.
    Jackson JL, et al. Associations of 25-hydroxyvitamin D with markers of inflammation, insulin resistance and obesity in black and white community-dwelling adults. J Clin Transl Endocrinol. 2016;5:21–5.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Gogia S, Kaiser Y, Tawakol A. Imaging high-risk atherosclerotic plaques with PET. Curr Treat Options Cardiovasc Med. 2016;18(12):76.CrossRefPubMedGoogle Scholar
  83. 83.
    Liu CL, Zhang K, Chen G. Hydrogen therapy: from mechanism to cerebral diseases. Med Gas Res. 2016;6(1):48–54.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Liang LJ, Yang JM, Jin XC. Cocktail treatment, a promising strategy to treat acute cerebral ischemic stroke? Med Gas Res. 2016;6(1):33–8.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Katayama Y, et al. Neuroprotective effects of clarithromycin against neuronal damage in cerebral ischemia and in cultured neuronal cells after oxygen-glucose deprivation. Life Sci. 2017;168:7–15.CrossRefPubMedGoogle Scholar
  86. 86.
    Anrather J, Iadecola C. Inflammation and stroke: an overview. Neurotherapeutics. 2016;13(4):661–70.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Satani N, Savitz SI. Is immunomodulation a principal mechanism underlying how cell-based therapies enhance stroke recovery? Neurotherapeutics. 2016;13(4):775–82.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem. 2016;139 Suppl 2:91–114.CrossRefPubMedGoogle Scholar
  89. 89.
    Choi DH, Kang SH, Song H. Mean platelet volume: a potential biomarker of the risk and prognosis of heart disease. Korean J Intern Med. 2016;31(6):1009–17.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    de Ramon L, et al. RNAi-based therapy in experimental ischemia-reperfusion injury. The new targets. Curr Pharm Des. 2016;22(30):4651–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Toraldo DM, et al. Statins may prevent atherosclerotic disease in OSA patients without co-morbidities? Curr Vasc Pharmacol. 2017;15(1):5–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
  2. 2.Department of Neurosurgery, School of MedicineStanford UniversityStanfordUSA

Personalised recommendations