Reactive Astrocytes in Cerebral Ischemic Reperfusion Injury

  • Abhishek Mishra
  • Rachana Nayak
  • Dandan SunEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Currently, limited stroke treatments are available due to a short time window for effective treatment. Previous research on stroke therapies has focused on neurons as therapeutic targets, with little emphasis on manipulation of other brain cells. Today, research is increasingly finding evidence of the potentials of astrocytes for stroke therapies. Here, we present a review of the roles of astrocytes in the healthy brain as well as the altered functions of astrocytes in the ischemic and post-ischemic brain that modulate neuronal recovery. Astrocytic regulation of neuronal function occurs in both healthy and diseased brains as a result of their close association in the tripartite synapse. We will place an emphasis on the astrocytic properties that promote neural protection and restoration, and will also discuss the hurdles reactive astrocytes and glial scarring pose to functional neuronal recovery. To overcome these challenges, therapeutic advances have been made by exploring drug treatments that target astrocyte function to modulate reactive astrogliosis. Continued research into reactive astrocyte biology will allow us to better understand their potential as targets for stroke therapies.


Cerebral ischemia Astrocyte Reperfusion 



The authors wish to thank Dr. Karen Carney for her critical review of the manuscript, R01 NIH NS038118 grant.


  1. 1.
    Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution. Glia. 2014;62(9):1377–91.CrossRefPubMedGoogle Scholar
  2. 2.
    Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35.CrossRefPubMedGoogle Scholar
  3. 3.
    Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999;22(5):208–15.CrossRefPubMedGoogle Scholar
  4. 4.
    Ota Y, Zanetti AT, Hallock RM. The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast. 2013;2013:185463.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Powell EM, Geller HM. Dissection of astrocyte-mediated cues in neuronal guidance and process extension. Glia. 1999;26(1):73–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Li Y, Liu Z, Xin H, Chopp M. The role of astrocytes in mediating exogenous cell-based restorative therapy for stroke. Glia. 2014;62(1):1–16.CrossRefPubMedGoogle Scholar
  7. 7.
    Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209.CrossRefPubMedGoogle Scholar
  8. 8.
    Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Danilov CA, Fiskum G. Hyperoxia promotes astrocyte cell death after oxygen and glucose deprivation. Glia. 2008;56(7):801–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Rosell A, Ortega-Aznar A, Alvarez-Sabin J, Fernandez-Cadenas I, Ribo M, Molina CA, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke. 2006;37(6):1399–406.CrossRefPubMedGoogle Scholar
  11. 11.
    Milner R, Hung S, Wang X, Spatz M, del Zoppo GJ. The rapid decrease in astrocyte-associated dystroglycan expression by focal cerebral ischemia is protease-dependent. J Cereb Blood Flow Metab. 2008;28(4):812–23.CrossRefPubMedGoogle Scholar
  12. 12.
    del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 2003;23(8):879–94.CrossRefPubMedGoogle Scholar
  13. 13.
    Carpenter KL, Jalloh I, Hutchinson PJ. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci. 2015;9:112.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Malarkey EB, Parpura V. Mechanisms of glutamate release from astrocytes. Neurochem Int. 2008;52(1–2):142–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Wade JJ, McDaid LJ, Harkin J, Crunelli V, Kelso JA. Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLoS One. 2011;6(12):e29445.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liddell JR, Robinson SR, Dringen R, Bishop GM. Astrocytes retain their antioxidant capacity into advanced old age. Glia. 2010;58(12):1500–9.PubMedGoogle Scholar
  17. 17.
    Paco S, Hummel M, Pla V, Sumoy L, Aguado F. Cyclic AMP signaling restricts activation and promotes maturation and antioxidant defenses in astrocytes. BMC Genomics. 2016;17:304.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci. 2015;16(11):25959–81.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shah K, Desilva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer’s disease. Int J Mol Sci. 2012;13(10):12629–55.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol. 2006;209(Pt 12):2304–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Sims NR, Nilsson M, Muyderman H. Mitochondrial glutathione: a modulator of brain cell death. J Bioenerg Biomembr. 2004;36(4):329–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Li M, Sun L, Luo Y, Xie C, Pang Y, Li Y. High-mobility group box 1 released from astrocytes promotes the proliferation of cultured neural stem/progenitor cells. Int J Mol Med. 2014;34(3):705–14.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chung WS, Allen NJ, Eroglu C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol. 2015;7(9):a020370.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI, Conatser LM, et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc Natl Acad Sci U S A. 2011;108(32):E440–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jones EV, Bernardinelli Y, Tse YC, Chierzi S, Wong TP, Murai KK. Astrocytes control glutamate receptor levels at developing synapses through SPARC-beta-integrin interactions. J Neurosci. 2011;31(11):4154–65.CrossRefPubMedGoogle Scholar
  26. 26.
    Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron. 2014;81(4):728–39.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Haydon PG, Nedergaard M. How do astrocytes participate in neural plasticity? Cold Spring Harb Perspect Biol. 2014;7(3):a020438.CrossRefPubMedGoogle Scholar
  28. 28.
    Barreto GE, Sun X, Xu L, Giffard RG. Astrocyte proliferation following stroke in the mouse depends on distance from the infarct. PLoS One. 2011;6(11):e27881.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kawano H, Kimura-Kuroda J, Komuta Y, Yoshioka N, Li HP, Kawamura K, et al. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res. 2012;349(1):169–80.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–47.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nowicka D, Rogozinska K, Aleksy M, Witte OW, Skangiel-Kramska J. Spatiotemporal dynamics of astroglial and microglial responses after photothrombotic stroke in the rat brain. Acta Neurobiol Exp (Wars). 2008;68(2):155–68.Google Scholar
  32. 32.
    Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, et al. Glial scar formation occurs in the human brain after ischemic stroke. Int J Med Sci. 2014;11(4):344–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    John GR, Lee SC, Song X, Rivieccio M, Brosnan CF. IL-1-regulated responses in astrocytes: relevance to injury and recovery. Glia. 2005;49(2):161–76.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Eddleston M, Mucke L. Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience. 1993;54(1):15–36.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Theodoric N, Bechberger JF, Naus CC, Sin WC. Role of gap junction protein connexin43 in astrogliosis induced by brain injury. PLoS One. 2012;7(10):e47311.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sun CL, Kim E, Crowder CM. Delayed innocent bystander cell death following hypoxia in Caenorhabditis elegans. Cell Death Differ. 2014;21(4):557–67.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Daleau P, Boudriau S, Michaud M, Jolicoeur C, Kingma JG Jr. Preconditioning in the absence or presence of sustained ischemia modulates myocardial Cx43 protein levels and gap junction distribution. Can J Physiol Pharmacol. 2001;79(5):371–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, et al. Astrocytic gap junctions remain open during ischemic conditions. J Neurosci. 1998;18(7):2520–37.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fukuda AM, Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation. 2012;9:279.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Schaefer PW, Buonanno FS, Gonzalez RG, Schwamm LH. Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia. Stroke. 1997;28(5):1082–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol. 2007;22(6):778–84.CrossRefPubMedGoogle Scholar
  42. 42.
    Kuppers E, Gleiser C, Brito V, Wachter B, Pauly T, Hirt B, et al. AQP4 expression in striatal primary cultures is regulated by dopamine—implications for proliferation of astrocytes. Eur J Neurosci. 2008;28(11):2173–82.CrossRefPubMedGoogle Scholar
  43. 43.
    Tomas-Camardiel M, Venero JL, de Pablos RM, Rite I, Machado A, Cano J. In vivo expression of aquaporin-4 by reactive microglia. J Neurochem. 2004;91(4):891–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Candelario-Jalil E, Yang Y, Rosenberg GA. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience. 2009;158(3):983–94.CrossRefPubMedGoogle Scholar
  45. 45.
    Xia W, Han J, Huang G, Ying W. Inflammation in ischaemic brain injury: current advances and future perspectives. Clin Exp Pharmacol Physiol. 2010;37(2):253–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Wolburg-Buchholz K, Mack AF, Steiner E, Pfeiffer F, Engelhardt B, Wolburg H. Loss of astrocyte polarity marks blood-brain barrier impairment during experimental autoimmune encephalomyelitis. Acta Neuropathol. 2009;118(2):219–33.CrossRefPubMedGoogle Scholar
  47. 47.
    Fallier-Becker P, Sperveslage J, Wolburg H, Noell S. The impact of agrin on the formation of orthogonal arrays of particles in cultured astrocytes from wild-type and agrin-null mice. Brain Res. 2011;1367:2–12.CrossRefPubMedGoogle Scholar
  48. 48.
    Noel G, Tham DK, Moukhles H. Interdependence of laminin-mediated clustering of lipid rafts and the dystrophin complex in astrocytes. J Biol Chem. 2009;284(29):19694–704.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Burda JE, Sofroniew MV. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 2014;81(2):229–48.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Alilain WJ, Horn KP, Hu H, Dick TE, Silver J. Functional regeneration of respiratory pathways after spinal cord injury. Nature. 2011;475(7355):196–200.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Busch SA, Silver J. The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol. 2007;17(1):120–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Davies SJ, Goucher DR, Doller C, Silver J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci. 1999;19(14):5810–22.CrossRefPubMedGoogle Scholar
  53. 53.
    Fitch MT, Silver J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol. 2008;209(2):294–301.CrossRefPubMedGoogle Scholar
  54. 54.
    Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM. Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci. 2004;24(45):10064–73.CrossRefPubMedGoogle Scholar
  55. 55.
    Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24(9):2143–55.CrossRefPubMedGoogle Scholar
  56. 56.
    Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain. 2006;129(Pt 10):2761–72.CrossRefPubMedGoogle Scholar
  57. 57.
    Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11(5):400–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, et al. Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab. 2008;28(3):468–81.CrossRefPubMedGoogle Scholar
  59. 59.
    de Pablo Y, Nilsson M, Pekna M, Pekny M. Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion. Histochem Cell Biol. 2013;140(1):81–91.CrossRefPubMedGoogle Scholar
  60. 60.
    Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron. 1999;23(2):297–308.CrossRefPubMedGoogle Scholar
  61. 61.
    Zador Z, Stiver S, Wang V, Manley GT. Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol. 2009;190:159–70.CrossRefGoogle Scholar
  62. 62.
    Pillai DR, Dittmar MS, Baldaranov D, Heidemann RM, Henning EC, Schuierer G, et al. Cerebral ischemia-reperfusion injury in rats—a 3 T MRI study on biphasic blood-brain barrier opening and the dynamics of edema formation. J Cereb Blood Flow Metab. 2009;29(11):1846–55.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Suzuki R, Yamaguchi T, Kirino T, Orzi F, Klatzo I. The effects of 5-minute ischemia in Mongolian gerbils: I. Blood-brain barrier, cerebral blood flow, and local cerebral glucose utilization changes. Acta Neuropathol. 1983;60(3–4):207–16.CrossRefPubMedGoogle Scholar
  64. 64.
    Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull. 1999;49(6):377–91.CrossRefPubMedGoogle Scholar
  65. 65.
    Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia. 2005;50(4):427–34.CrossRefPubMedGoogle Scholar
  66. 66.
    Overman JJ, Clarkson AN, Wanner IB, Overman WT, Eckstein I, Maguire JL, et al. A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A. 2012;109(33):E2230–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007;28(3):138–45.CrossRefPubMedGoogle Scholar
  68. 68.
    Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997;20(12):570–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, et al. Genomic analysis of reactive astrogliosis. J Neurosci. 2012;32(18):6391–410.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hamby ME, Coppola G, Ao Y, Geschwind DH, Khakh BS, Sofroniew MV. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J Neurosci. 2012;32(42):14489–510.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Brambilla R, Bracchi-Ricard V, Hu WH, Frydel B, Bramwell A, Karmally S, et al. Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J Exp Med. 2005;202(1):145–56.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, et al. Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med. 2006;12(7):829–34.CrossRefPubMedGoogle Scholar
  73. 73.
    Brambilla R, Persaud T, Hu X, Karmally S, Shestopalov VI, Dvoriantchikova G, et al. Transgenic inhibition of astroglial NF-kappa B improves functional outcome in experimental autoimmune encephalomyelitis by suppressing chronic central nervous system inflammation. J Immunol. 2009;182(5):2628–40.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest. 2012;122(7):2454–68.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A. 2009;106(6):1977–82.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Kang Z, Altuntas CZ, Gulen MF, Liu C, Giltiay N, Qin H, et al. Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. Immunity. 2010;32(3):414–25.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Meeuwsen S, Persoon-Deen C, Bsibsi M, Ravid R, van Noort JM. Cytokine, chemokine and growth factor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli. Glia. 2003;43(3):243–53.CrossRefPubMedGoogle Scholar
  78. 78.
    Jensen CJ, Massie A, De Keyser J. Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol. 2013;8(4):824–39.CrossRefPubMedGoogle Scholar
  79. 79.
    Cooley ID, Chauhan VS, Donneyz MA, Marriott I. Astrocytes produce IL-19 in response to bacterial challenge and are sensitive to the immunosuppressive effects of this IL-10 family member. Glia. 2014;62(5):818–28.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci. 2013;33(31):12870–86.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci. 2008;28(28):7231–43.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Wang X, Deckert M, Xuan NT, Nishanth G, Just S, Waisman A, et al. Astrocytic A20 ameliorates experimental autoimmune encephalomyelitis by inhibiting NF-kappaB- and STAT1-dependent chemokine production in astrocytes. Acta Neuropathol. 2013;126(5):711–24.CrossRefPubMedGoogle Scholar
  83. 83.
    Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via alphaB-crystallin. Nature. 2013;494(7435):90–4.CrossRefPubMedGoogle Scholar
  84. 84.
    Steelman AJ, Smith R III, Welsh CJ, Li J. Galectin-9 protein is up-regulated in astrocytes by tumor necrosis factor and promotes encephalitogenic T-cell apoptosis. J Biol Chem. 2013;288(33):23776–87.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sarafian TA, Montes C, Imura T, Qi J, Coppola G, Geschwind DH, et al. Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS One. 2010;5(3):e9532.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci. 2009;29(37):11511–22.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Toft-Hansen H, Fuchtbauer L, Owens T. Inhibition of reactive astrocytosis in established experimental autoimmune encephalomyelitis favors infiltration by myeloid cells over T cells and enhances severity of disease. Glia. 2011;59(1):166–76.CrossRefPubMedGoogle Scholar
  88. 88.
    Liu Z, Li Y, Cui Y, Roberts C, Lu M, Wilhelmsson U, et al. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia. 2014;62(12):2022–33.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Drogemuller K, Helmuth U, Brunn A, Sakowicz-Burkiewicz M, Gutmann DH, Mueller W, et al. Astrocyte gp130 expression is critical for the control of Toxoplasma encephalitis. J Immunol. 2008;181(4):2683–93.CrossRefPubMedGoogle Scholar
  90. 90.
    Haroon F, Drogemuller K, Handel U, Brunn A, Reinhold D, Nishanth G, et al. Gp130-dependent astrocytic survival is critical for the control of autoimmune central nervous system inflammation. J Immunol. 2011;186(11):6521–31.CrossRefPubMedGoogle Scholar
  91. 91.
    Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol. 2011;93(3):421–43.CrossRefPubMedGoogle Scholar
  92. 92.
    Liedtke W, Edelmann W, Chiu FC, Kucherlapati R, Raine CS. Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion. Am J Pathol. 1998;152(1):251–9.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Macauley SL, Pekny M, Sands MS. The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J Neurosci. 2011;31(43):15575–85.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Norden DM, Fenn AM, Dugan A, Godbout JP. TGFbeta produced by IL-10 redirected astrocytes attenuates microglial activation. Glia. 2014;62(6):881–95.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Cekanaviciute E, Dietrich HK, Axtell RC, Williams AM, Egusquiza R, Wai KM, et al. Astrocytic TGF-beta signaling limits inflammation and reduces neuronal damage during central nervous system toxoplasma infection. J Immunol. 2014;193(1):139–49.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Cekanaviciute E, Fathali N, Doyle KP, Williams AM, Han J, Buckwalter MS. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia. 2014;62(8):1227–40.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Min KJ, Yang MS, Kim SU, Jou I, Joe EH. Astrocytes induce hemeoxygenase-1 expression in microglia: a feasible mechanism for preventing excessive brain inflammation. J Neurosci. 2006;26(6):1880–7.CrossRefPubMedGoogle Scholar
  98. 98.
    Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE. Astrocytic regulation of human monocytic/microglial activation. J Immunol. 2008;181(8):5425–32.CrossRefPubMedGoogle Scholar
  99. 99.
    Beck H, Plate KH. Angiogenesis after cerebral ischemia. Acta Neuropathol. 2009;117(5):481–96.CrossRefPubMedGoogle Scholar
  100. 100.
    Christopherson KS, Ullian EM, Stokes CC, Mullowney CE, Hell JW, Agah A, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell. 2005;120(3):421–33.CrossRefPubMedGoogle Scholar
  101. 101.
    Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 2009;8(5):491–500.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Benner EJ, Luciano D, Jo R, Abdi K, Paez-Gonzalez P, Sheng H, et al. Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature. 2013;497(7449):369–73.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Andersson D, Wilhelmsson U, Nilsson M, Kubista M, Stahlberg A, Pekna M, et al. Plasticity response in the contralesional hemisphere after subtle neurotrauma: gene expression profiling after partial deafferentation of the hippocampus. PLoS One. 2013;8(7):e70699.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Winter CG, Saotome Y, Levison SW, Hirsh D. A role for ciliary neurotrophic factor as an inducer of reactive gliosis, the glial response to central nervous system injury. Proc Natl Acad Sci U S A. 1995;92(13):5865–9.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res. 2006;84(7):1495–504.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Kobayashi T, Ahlenius H, Thored P, Kobayashi R, Kokaia Z, Lindvall O. Intracerebral infusion of glial cell line-derived neurotrophic factor promotes striatal neurogenesis after stroke in adult rats. Stroke. 2006;37(9):2361–7.CrossRefPubMedGoogle Scholar
  107. 107.
    Ikeda T, Xia XY, Xia YX, Ikenoue T, Han B, Choi BH. Glial cell line-derived neurotrophic factor protects against ischemia/hypoxia-induced brain injury in neonatal rat. Acta Neuropathol. 2000;100(2):161–7.CrossRefPubMedGoogle Scholar
  108. 108.
    Kitagawa H, Sasaki C, Zhang WR, Sakai K, Shiro Y, Warita H, et al. Induction of glial cell line-derived neurotrophic factor receptor proteins in cerebral cortex and striatum after permanent middle cerebral artery occlusion in rats. Brain Res. 1999;834(1–2):190–5.CrossRefPubMedGoogle Scholar
  109. 109.
    Kokaia Z, Airaksinen MS, Nanobashvili A, Larsson E, Kujamaki E, Lindvall O, et al. GDNF family ligands and receptors are differentially regulated after brain insults in the rat. Eur J Neurosci. 1999;11(4):1202–16.CrossRefPubMedGoogle Scholar
  110. 110.
    Wei G, Wu G, Cao X. Dynamic expression of glial cell line-derived neurotrophic factor after cerebral ischemia. Neuroreport. 2000;11(6):1177–83.CrossRefPubMedGoogle Scholar
  111. 111.
    Zhang C, Li Y, Chen J, Gao Q, Zacharek A, Kapke A, et al. Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats. Neuroscience. 2006;141(2):687–95.CrossRefPubMedGoogle Scholar
  112. 112.
    Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature. 2010;468(7321):305–9.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    van Bruggen N, Thibodeaux H, Palmer JT, Lee WP, Fu L, Cairns B, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest. 1999;104(11):1613–20.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Carmichael ST. Plasticity of cortical projections after stroke. Neuroscientist. 2003;9(1):64–75.CrossRefPubMedGoogle Scholar
  115. 115.
    Krakauer JW, Carmichael ST, Corbett D, Wittenberg GF. Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012;26(8):923–31.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Nilsson M, Pekny M. Enriched environment and astrocytes in central nervous system regeneration. J Rehabil Med. 2007;39(5):345–52.CrossRefPubMedGoogle Scholar
  117. 117.
    Pekna M, Pekny M, Nilsson M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke. 2012;43(10):2819–28.CrossRefPubMedGoogle Scholar
  118. 118.
    Hauck SM, von Toerne C, Ueffing M. The neuroprotective potential of retinal Muller glial cells. Adv Exp Med Biol. 2014;801:381–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of PittsburghPittsburghUSA

Personalised recommendations