Programmed Cell Death in CIRI

  • Ruili Wei
  • Yang Xu
  • Jie Zhang
  • Benyan Luo
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Neurons in the ischemic penumbra or peri-infarct zone may undergo delayed cell death which called programmed cell death (PCD) and thus they are potentially recoverable for some time after the onset of stroke. There were three major morphologies of PCD in the cerebral ischemic injury, including apoptosis, autophagy and programmed necrosis (also known as necroptosis). In this review we will discuss the characteristics, molecular mechanism of each PCD mode and their role in cerebral ischemia and reperfusion injury (CIRI), furthermore crosstalk between various modes of PCD is also dicussed.


Programmed cell death Apoptosis Autophagy Programmed necrosis Necroptosis Cerebral ischemia and reperfusion injury 


  1. 1.
    Ouyang YB, Giffard RG. Er-mitochondria crosstalk during cerebral ischemia: Molecular chaperones and er-mitochondrial calcium transfer. Int J Cell Biol. 2012;2012:493934.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–568.CrossRefPubMedGoogle Scholar
  3. 3.
    Baron JC. Mapping the ischaemic penumbra with pet: implications for acute stroke treatment. Cerebrovasc Dis. 1999;9:193–201.CrossRefPubMedGoogle Scholar
  4. 4.
    Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981;12:723–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ. 2012;19:107–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147:742–58.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci. 2005;118:7–18.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Conrad M, Angeli JP, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2016;15:348–66.CrossRefPubMedGoogle Scholar
  10. 10.
    Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004;16:663–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40:e331–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhu C, Wang X, Xu F, Bahr BA, Shibata M, Uchiyama Y, et al. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ. 2005;12:162–76.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, et al. Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem. 2006;96:1016–27.CrossRefPubMedGoogle Scholar
  15. 15.
    Rai NK, Tripathi K, Sharma D, Shukla VK. Apoptosis: a basic physiologic process in wound healing. Int J Low Extrem Wounds. 2005;4:138–44.CrossRefPubMedGoogle Scholar
  16. 16.
    Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci. 1998;18:3659–68.CrossRefPubMedGoogle Scholar
  17. 17.
    Siegel C, McCullough LD. Nad+ depletion or par polymer formation: which plays the role of executioner in ischaemic cell death? Acta Physiol. 2011;203:225–34.CrossRefGoogle Scholar
  18. 18.
    Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, et al. Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci. 2001;21:7127–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Hardwick JM, Chen YB, Jonas EA. Multipolar functions of bcl-2 proteins link energetics to apoptosis. Trends Cell Biol. 2012;22:318–28.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Webster KA, Graham RM, Thompson JW, Spiga MG, Frazier DP, Wilson A, et al. Redox stress and the contributions of bh3-only proteins to infarction. Antioxid Redox Signal. 2006;8:1667–76.CrossRefPubMedGoogle Scholar
  21. 21.
    Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ. From basic apoptosis discoveries to advanced selective bcl-2 family inhibitors. Nat Rev Drug Discov. 2017;16:273–84.CrossRefPubMedGoogle Scholar
  22. 22.
    Zhai D, Chin K, Wang M, Liu F. Disruption of the nuclear p53-gapdh complex protects against ischemia-induced neuronal damage. Mol Brain. 2014;7:20.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Loh KP, Huang SH, De Silva R, Tan BK, Zhu YZ. Oxidative stress: apoptosis in neuronal injury. Curr Alzheimer Res. 2006;3:327–37.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang Y, Wan C, Yu S, Yang L, Li B, Lu T, et al. Upregulated expression of nf-yc contributes to neuronal apoptosis via proapoptotic protein bim in rats' brain hippocampus following middle cerebral artery occlusion (mcao). J Mol Neurosci. 2014;52:552–65.CrossRefPubMedGoogle Scholar
  25. 25.
    Armugam A, Cher CD, Lim K, Koh DC, Howells DW, Jeyaseelan K. A secretory phospholipase a2-mediated neuroprotection and anti-apoptosis. BMC Neurosci. 2009;10:120.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li D, Li X, Wu J, Li J, Zhang L, Xiong T, et al. Involvement of the jnk/foxo3a/bim pathway in neuronal apoptosis after hypoxic-ischemic brain damage in neonatal rats. PLoS One. 2015;10:e0132998.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ma M, Wang X, Ding X, Teng J, Shao F, Zhang J. Numb/notch signaling plays an important role in cerebral ischemia-induced apoptosis. Neurochem Res. 2013;38:254–61.CrossRefPubMedGoogle Scholar
  28. 28.
    Mergenthaler P, Dirnagl U, Meisel A. Pathophysiology of stroke: lessons from animal models. Metab Brain Dis. 2004;19:151–67.CrossRefPubMedGoogle Scholar
  29. 29.
    Simard JM, Tarasov KV, Gerzanich V. Non-selective cation channels, transient receptor potential channels and ischemic stroke. Biochim Biophys Acta. 2007;1772:947–57.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Culmsee C, Zhu C, Landshamer S, Becattini B, Wagner E, Pellecchia M, et al. Apoptosis-inducing factor triggered by poly(adp-ribose) polymerase and bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J Neurosci. 2005;25:10262–72.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, et al. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx. 2004;1:17–25.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cho BB, Toledo-Pereyra LH. Caspase-independent programmed cell death following ischemic stroke. J Investig Surg. 2008;21:141–7.CrossRefGoogle Scholar
  33. 33.
    Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, et al. Mitochondrio-nuclear translocation of aif in apoptosis and necrosis. FASEB J. 2000;14:729–39.CrossRefPubMedGoogle Scholar
  34. 34.
    Love S. Apoptosis and brain ischaemia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27:267–82.CrossRefGoogle Scholar
  35. 35.
    Tanaka H, Yokota H, Jover T, Cappuccio I, Calderone A, Simionescu M, et al. Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J Neurosci. 2004;24:2750–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Cao G, Xiao M, Sun F, Xiao X, Pei W, Li J, et al. Cloning of a novel apaf-1-interacting protein: a potent suppressor of apoptosis and ischemic neuronal cell death. J Neurosci. 2004;24:6189–201.CrossRefPubMedGoogle Scholar
  37. 37.
    Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, Epstein CJ, et al. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome c and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci. 1999;19:3414–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Gao Y, Liang W, Hu X, Zhang W, Stetler RA, Vosler P, et al. Neuroprotection against hypoxic-ischemic brain injury by inhibiting the apoptotic protease activating factor-1 pathway. Stroke. 2010;41:166–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A. 2001;98:4044–9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Martin-Villalba A, Herr I, Jeremias I, Hahne M, Brandt R, Vogel J, et al. Cd95 ligand (fas-l/apo-1l) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J Neurosci. 1999;19:3809–17.CrossRefPubMedGoogle Scholar
  41. 41.
    Hasegawa Y, Suzuki H, Sozen T, Rolland W, Zhang JH. Activation of sphingosine 1-phosphate receptor-1 by fty720 is neuroprotective after ischemic stroke in rats. Stroke. 2010;41:368–74.CrossRefPubMedGoogle Scholar
  42. 42.
    Cao Y, Mao X, Sun C, Zheng P, Gao J, Wang X, et al. Baicalin attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-oxidative and anti-apoptotic pathways. Brain Res Bull. 2011;85:396–402.CrossRefPubMedGoogle Scholar
  43. 43.
    Chen S, Peng H, Rowat A, Gao F, Zhang Z, Wang P, et al. The effect of concentration and duration of normobaric oxygen in reducing caspase-3 and -9 expression in a rat-model of focal cerebral ischaemia. Brain Res. 2015;1618:205–11.CrossRefPubMedGoogle Scholar
  44. 44.
    Fuchs Y, Steller H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol. 2015;16:329–44.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, et al. Inhibition of caspases increases the sensitivity of l929 cells to necrosis mediated by tumor necrosis factor. J Exp Med. 1998;187:1477–85.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S. Caspase-independent cell killing by fas-associated protein with death domain. J Cell Biol. 1998;143:1353–60.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11:700–14.CrossRefPubMedGoogle Scholar
  48. 48.
    Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, et al. Caspase-8 regulates tnf-alpha-induced epithelial necroptosis and terminal ileitis. Nature. 2011;477:335–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8-flip(l) complex inhibits ripk3-dependent necrosis. Nature. 2011;471:363–7.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, et al. Rip3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 2011;471:368–72.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Xu Y, Wang J, Song X, Qu L, Wei R, He F, et al. Rip3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via aif. Sci Rep. 2016;6:29362.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhang J, Yang Y, He W, Sun L. Necrosome core machinery: Mlkl. Cell Mol Life Sci. 2016;73:2153–63.CrossRefPubMedGoogle Scholar
  53. 53.
    Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell. 2008;135:1311–23.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase rip as effector molecule. Nat Immunol. 2000;1:489–95.CrossRefPubMedGoogle Scholar
  55. 55.
    Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, et al. The rip1/rip3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012;150:339–50.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of rip3 kinase. Cell. 2012;148:213–27.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase pgam5 functions at the convergence point of multiple necrotic death pathways. Cell. 2012;148:228–43.CrossRefPubMedGoogle Scholar
  58. 58.
    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, et al. Ischemic insults induce necroptotic cell death in hippocampal neurons through the up-regulation of endogenous rip3. Neurobiol Dis. 2014;68:26–36.CrossRefPubMedGoogle Scholar
  60. 60.
    Yin B, Xu Y, Wei RL, He F, Luo BY, Wang JY. Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res. 2015;1609:63–71.CrossRefPubMedGoogle Scholar
  61. 61.
    Fakharnia F, Khodagholi F, Dargahi L, Ahmadiani A. Prevention of cyclophilin d-mediated mptp opening using cyclosporine-a alleviates the elevation of necroptosis, autophagy and apoptosis-related markers following global cerebral ischemia-reperfusion. J Mol Neurosci. 2017;61:52–60.CrossRefPubMedGoogle Scholar
  62. 62.
    Dong Y, Bao C, Yu J, Liu X. Receptor-interacting protein kinase 3-mediated programmed cell necrosis in rats subjected to focal cerebral ischemia-reperfusion injury. Mol Med Rep. 2016;14:728–36.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Miao W, Qu Z, Shi K, Zhang D, Zong Y, Zhang G, et al. Rip3 s-nitrosylation contributes to cerebral ischemic neuronal injury. Brain Res. 2015;1627:165–76.CrossRefPubMedGoogle Scholar
  64. 64.
    Melo-Lima S, Celeste Lopes M, Mollinedo F. Necroptosis is associated with low procaspase-8 and active ripk1 and −3 in human glioma cells. Oncoscience. 2014;1:649–64.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, et al. Identification of rip1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4:313–21.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Vandenabeele P, Declercq W, Vanden Berghe T. Necrotic cell death and 'necrostatins': Now we can control cellular explosion. Trends Biochem Sci. 2008;33:352–5.CrossRefPubMedGoogle Scholar
  67. 67.
    Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, et al. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res. 2014;5:618–26.CrossRefPubMedGoogle Scholar
  68. 68.
    Xu Y, Wang J, Song X, Wei R, He F, Peng G, et al. Protective mechanisms of ca074-me (other than cathepsin-b inhibition) against programmed necrosis induced by global cerebral ischemia/reperfusion injury in rats. Brain Res Bull. 2016;120:97–105.CrossRefPubMedGoogle Scholar
  69. 69.
    Yoshimori T. Autophagy: paying Charon’s toll. Cell. 2007;128:833–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis. Cell Res. 2014;24:58–68.CrossRefPubMedGoogle Scholar
  71. 71.
    Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–8.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res. 2014;24:42–57.CrossRefPubMedGoogle Scholar
  73. 73.
    Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ. 2009;16:21–30.CrossRefPubMedGoogle Scholar
  74. 74.
    Clarke PG, Puyal J. Autophagic cell death exists. Autophagy. 2012;8:867–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther. 2012;18:250–60.CrossRefPubMedGoogle Scholar
  76. 76.
    Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, et al. Role of bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol. 2004;6:1221–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, et al. Regulation of an atg7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304:1500–2.CrossRefPubMedGoogle Scholar
  78. 78.
    Smith CM, Chen Y, Sullivan ML, Kochanek PM, Clark RS. Autophagy in acute brain injury: feast, famine, or folly? Neurobiol Dis. 2011;43:52–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Yu L, Lenardo MJ, Baehrecke EH. Autophagy and caspases: a new cell death program. Cell Cycle. 2004;3:1124–6.PubMedGoogle Scholar
  80. 80.
    Jung CH, Ro SH, Cao J, Otto NM, Kim DH. Mtor regulation of autophagy. FEBS Lett. 2010;584:1287–95.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Chong ZZ, Shang YC, Wang S, Maiese K. A critical kinase cascade in neurological disorders: Pi 3-k, akt, and mtor. Future Neurol. 2012;7:733–48.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Xingyong C, Xicui S, Huanxing S, Jingsong O, Yi H, Xu Z, et al. Upregulation of myeloid cell leukemia-1 potentially modulates beclin-1-dependent autophagy in ischemic stroke in rats. BMC Neurosci. 2013;14:56.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Xu F, Li J, Ni W, Shen YW, Zhang XP. Peroxisome proliferator-activated receptor-gamma agonist 15d-prostaglandin j2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury. PLoS One. 2013;8:e55080.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, et al. Tsc2 integrates wnt and energy signals via a coordinated phosphorylation by ampk and gsk3 to regulate cell growth. Cell. 2006;126:955–68.CrossRefPubMedGoogle Scholar
  86. 86.
    Poels J, Spasic MR, Callaerts P, Norga KK. Expanding roles for amp-activated protein kinase in neuronal survival and autophagy. Bioessays. 2009;31:944–52.CrossRefPubMedGoogle Scholar
  87. 87.
    Li J, McCullough LD. Effects of amp-activated protein kinase in cerebral ischemia. J Cereb Blood Flow Metab. 2010;30:480–92.CrossRefPubMedGoogle Scholar
  88. 88.
    Oberstein A, Jeffrey PD, Shi Y. Crystal structure of the bcl-xl-beclin 1 peptide complex: Beclin 1 is a novel bh3-only protein. J Biol Chem. 2007;282:13123–32.CrossRefPubMedGoogle Scholar
  89. 89.
    Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit beclin 1-dependent autophagy. Cell. 2005;122:927–39.CrossRefPubMedGoogle Scholar
  90. 90.
    He C, Levine B. The beclin 1 interactome. Curr Opin Cell Biol. 2010;22:140–9.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Maiuri MC, Criollo A, Kroemer G. Crosstalk between apoptosis and autophagy within the beclin 1 interactome. EMBO J. 2010;29:515–6.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Carloni S, Buonocore G, Balduini W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis. 2008;32:329–39.CrossRefPubMedGoogle Scholar
  93. 93.
    Rami A, Langhagen A, Steiger S. Focal cerebral ischemia induces upregulation of beclin 1 and autophagy-like cell death. Neurobiol Dis. 2008;29:132–41.CrossRefPubMedGoogle Scholar
  94. 94.
    Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of amp-activated protein kinase and beclin 1 in mediating autophagy. Circ Res. 2007;100:914–22.CrossRefPubMedGoogle Scholar
  95. 95.
    Kang R, Zeh HJ, Lotze MT, Tang D. The beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18:571–80.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Althaus J, Bernaudin M, Petit E, Toutain J, Touzani O, Rami A. Expression of the gene encoding the pro-apoptotic bnip3 protein and stimulation of hypoxia-inducible factor-1alpha (hif-1alpha) protein following focal cerebral ischemia in rats. Neurochem Int. 2006;48:687–95.CrossRefPubMedGoogle Scholar
  97. 97.
    Xin XY, Pan J, Wang XQ, Ma JF, Ding JQ, Yang GY, et al. 2-Methoxyestradiol attenuates autophagy activation after global ischemia. J Can Sci Neurol. 2011;38:631–8.CrossRefGoogle Scholar
  98. 98.
    Cho B, Choi SY, Park OH, Sun W, Geum D. Differential expression of bnip family members of bh3-only proteins during the development and after axotomy in the rat. Mol Cells. 2012;33:605–10.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    He S, Wang C, Dong H, Xia F, Zhou H, Jiang X, et al. Immune-related gtpase m (irgm1) regulates neuronal autophagy in a mouse model of stroke. Autophagy. 2012;8:1621–7.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Banasiak KJ, Haddad GG. Hypoxia-induced apoptosis: Effect of hypoxic severity and role of p53 in neuronal cell death. Brain Res. 1998;797:295–304.CrossRefPubMedGoogle Scholar
  101. 101.
    Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. Dram, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126:121–34.CrossRefPubMedGoogle Scholar
  102. 102.
    Wang Y, Dong XX, Cao Y, Liang ZQ, Han R, Wu JC, et al. P53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Eur J Neurosci. 2009;30:2258–70.CrossRefPubMedGoogle Scholar
  103. 103.
    Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, et al. Low-level laser therapy activates nf-kb via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 2011;6:e22453.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Li WL, Yu SP, Chen D, Yu SS, Jiang YJ, Genetta T, et al. The regulatory role of nf-kappab in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience. 2013;244:16–30.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Cui DR, Wang L, Jiang W, Qi AH, Zhou QH, Zhang XL. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the nf-kappab/p53 signaling pathway. Neuroscience. 2013;246:117–32.CrossRefPubMedGoogle Scholar
  106. 106.
    Lien SC, Chang SF, Lee PL, Wei SY, Chang MD, Chang JY, et al. Mechanical regulation of cancer cell apoptosis and autophagy: roles of bone morphogenetic protein receptor, smad1/5, and p38 mapk. Biochim Biophys Acta. 2013;1833:3124–33.CrossRefPubMedGoogle Scholar
  107. 107.
    Wang PR, Wang JS, Zhang C, Song XF, Tian N, Kong LY. Huang-lian-jie-du-decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via mapk-mtor signaling pathway. J Ethnopharmacol. 2013;149:270–80.CrossRefPubMedGoogle Scholar
  108. 108.
    Kubota C, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, et al. Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem. 2010;285:667–74.CrossRefPubMedGoogle Scholar
  109. 109.
    Mehta SL, Kumari S, Mendelev N, Li PA. Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci. 2012;13:79.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Puyal J, Ginet V, Grishchuk Y, Truttmann AC, Clarke PG. Neuronal autophagy as a mediator of life and death: contrasting roles in chronic neurodegenerative and acute neural disorders. Neuroscientist. 2012;18:224–36.CrossRefPubMedGoogle Scholar
  111. 111.
    Kulbe JR, Mulcahy Levy JM, Coultrap SJ, Thorburn A, Bayer KU. Excitotoxic glutamate insults block autophagic flux in hippocampal neurons. Brain Res. 2014;1542:12–9.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvation-induced and constitutive autophagy in atg7-deficient mice. J Cell Biol. 2005;169:425–34.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–4.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169:566–83.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, et al. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol. 2008;172:454–69.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, et al. Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 2008;4:762–9.CrossRefPubMedGoogle Scholar
  117. 117.
    Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W. Activation of autophagy and akt/creb signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy. 2010;6:366–77.CrossRefPubMedGoogle Scholar
  118. 118.
    Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy. 2012;8:77–87.CrossRefPubMedGoogle Scholar
  119. 119.
    Kang C, Avery L. To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy. 2008;4:82–4.CrossRefPubMedGoogle Scholar
  120. 120.
    Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010;90:1383–435.CrossRefPubMedGoogle Scholar
  121. 121.
    Sheng R, Zhang LS, Han R, Liu XQ, Gao B, Qin ZH. Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning. Autophagy. 2010;6:482–94.CrossRefPubMedGoogle Scholar
  122. 122.
    Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res. 2011;1402:109–21.CrossRefPubMedGoogle Scholar
  123. 123.
    Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol. 2009;66:378–89.CrossRefPubMedGoogle Scholar
  124. 124.
    Gao L, Jiang T, Guo J, Liu Y, Cui G, Gu L, et al. Inhibition of autophagy contributes to ischemic postconditioning-induced neuroprotection against focal cerebral ischemia in rats. PLoS One. 2012;7:e46092.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Komatsu M, Ueno T, Waguri S, Uchiyama Y, Kominami E, Tanaka K. Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons. Cell Death Differ. 2007;14:887–94.PubMedGoogle Scholar
  126. 126.
    Xu F, Gu JH, Qin ZH. Neuronal autophagy in cerebral ischemia. Neurosci Bull. 2012;28:658–66.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Luo T, Park Y, Sun X, Liu C, Hu B. Protein misfolding, aggregation, and autophagy after brain ischemia. Transl Stroke Res. 2013;4:581–8.CrossRefPubMedGoogle Scholar
  128. 128.
    Liu C, Gao Y, Barrett J, Hu B. Autophagy and protein aggregation after brain ischemia. J Neurochem. 2010;115:68–78.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Puyal J, Clarke PG. Targeting autophagy to prevent neonatal stroke damage. Autophagy. 2009;5:1060–1.CrossRefPubMedGoogle Scholar
  130. 130.
    Long JS, Ryan KM. New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene. 2012;31:5045–60.CrossRefPubMedGoogle Scholar
  131. 131.
    Zhivotovsky B, Orrenius S. Cell death mechanisms: cross-talk and role in disease. Exp Cell Res. 2010;316:1374–83.CrossRefPubMedGoogle Scholar
  132. 132.
    Amaravadi RK, Thompson CB. The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res. 2007;13:7271–9.CrossRefPubMedGoogle Scholar
  133. 133.
    Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta. 2006;1757:1371–87.CrossRefPubMedGoogle Scholar
  134. 134.
    Wang N, Pan W, Zhu M, Zhang M, Hao X, Liang G, et al. Fangchinoline induces autophagic cell death via p53/sestrin2/ampk signalling in human hepatocellular carcinoma cells. Br J Pharmacol. 2011;164:731–42.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ. 2010;17:922–30.CrossRefGoogle Scholar
  136. 136.
    Wallach D, Kang TB, Kovalenko A. Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat Rev Immunol. 2014;14:51–9.CrossRefPubMedGoogle Scholar
  137. 137.
    Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene. 2008;27:6194–206.CrossRefPubMedGoogle Scholar
  138. 138.
    Jeong SJ, Dasgupta A, Jung KJ, Um JH, Burke A, Park HU, et al. Pi3k/akt inhibition induces caspase-dependent apoptosis in htlv-1-transformed cells. Virology. 2008;370:264–72.CrossRefPubMedGoogle Scholar
  139. 139.
    Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M. Pi3k/akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.CrossRefPubMedGoogle Scholar
  140. 140.
    Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, et al. Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 2013;9:1321–33.CrossRefPubMedGoogle Scholar
  141. 141.
    Zhang ZB, Li ZG. Cathepsin b and phospo-jnk in relation to ongoing apoptosis after transient focal cerebral ischemia in the rat. Neurochem Res. 2012;37:948–57.CrossRefPubMedGoogle Scholar
  142. 142.
    Canu N, Tufi R, Serafino AL, Amadoro G, Ciotti MT, Calissano P. Role of the autophagic-lysosomal system on low potassium-induced apoptosis in cultured cerebellar granule cells. J Neurochem. 2005;92:1228–42.CrossRefPubMedGoogle Scholar
  143. 143.
    Grishchuk Y, Ginet V, Truttmann AC, Clarke PG, Puyal J. Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy. 2011;7:1115–31.CrossRefPubMedGoogle Scholar
  144. 144.
    Heitz S, Grant NJ, Leschiera R, Haeberle AM, Demais V, Bombarde G, et al. Autophagy and cell death of purkinje cells overexpressing doppel in ngsk prnp-deficient mice. Brain Pathol. 2010;20:119–32.CrossRefPubMedGoogle Scholar
  145. 145.
    Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, et al. Atg12 conjugation to atg3 regulates mitochondrial homeostasis and cell death. Cell. 2010;142:590–600.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    He G, Xu W, Tong L, Li S, Su S, Tan X, et al. Gadd45b prevents autophagy and apoptosis against rat cerebral neuron oxygen-glucose deprivation/reperfusion injury. Apoptosis. 2016;21:390–403.CrossRefPubMedGoogle Scholar
  147. 147.
    Qi Z, Dong W, Shi W, Wang R, Zhang C, Zhao Y, et al. Bcl-2 phosphorylation triggers autophagy switch and reduces mitochondrial damage in limb remote ischemic conditioned rats after ischemic stroke. Transl Stroke Res. 2015;6:198–206.CrossRefPubMedGoogle Scholar
  148. 148.
    Delgado M, Tesfaigzi Y. Bh3-only proteins, bmf and bim, in autophagy. Cell Cycle. 2013;12:3453–4.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Luo S, Rubinsztein DC. Apoptosis blocks beclin 1-dependent autophagosome synthesis: an effect rescued by bcl-xl. Cell Death Differ. 2010;17:268–77.CrossRefPubMedGoogle Scholar
  150. 150.
    Luo S, Rubinsztein DC. Bcl2l11/bim: a novel molecular link between autophagy and apoptosis. Autophagy. 2013;9:104–5.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Balduini W, Carloni S, Buonocore G. Autophagy in hypoxia-ischemia induced brain injury: evidence and speculations. Autophagy. 2009;5:221–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurology, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina

Personalised recommendations