Gelatinase-Mediated Impairment of Microvascular Beds in Cerebral Ischemia and Reperfusion Injury

  • Shanyan Chen
  • Hailong Song
  • Jiankun Cui
  • Joel I. Shenker
  • Yujie Chen
  • Grace Y. Sun
  • Hua Feng
  • Zezong GuEmail author
Part of the Springer Series in Translational Stroke Research book series (SSTSR)


Stroke is one of the leading causes of death, and acute ischemic stroke (AIS) is the most common form. Tissue plasminogen activator (tPA) is the only FDA-approved drug for recanalization in AIS with narrow therapeutic window. In this chapter, we will discuss the activation of gelatinases (MMP-2/9), one of the major mediators in cerebral ischemia and reperfusion injury (CIRI) with exogenous tPA in AIS. First, we briefly overview the structure of microvascular beds and the homeostasis of neurovascular unit associated with the extracellular matrix (ECM). Then we review the gelatinase-mediated degradation of ECM and the impairment of microvascular beds in AIS. Moreover, we discuss the self-perpetuating loop of gelatinase activation in CIRI with exogenous tPA. At last, we literature available approaches showing protective functions through blocking the vicious circle of gelatinase activation, which may hold great promise in combined treatment with tPA in AIS.


Gelatinases Microvascular beds Cerebral ischemia and reperfusion injury Extracellular matrix Mechanism-based inhibitor tPA 


  1. 1.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2095–128.CrossRefPubMedGoogle Scholar
  2. 2.
    Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010. Lancet. 2014;383:245–54.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119:480–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Liu L, Wang D, Wong KS, Wang Y. Stroke and stroke care in china: huge burden, significant workload, and a national priority. Stroke. 2011;42:3651–4.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    He J, Gu D, Wu X, Reynolds K, Duan X, Yao C, et al. Major causes of death among men and women in china. N Engl J Med. 2005;353:1124–34.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in china during 1990–2013: a systematic subnational analysis for the global burden of disease study 2013. Lancet. 2016;387:251–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Toyoda K, Koga M, Hayakawa M, Yamagami H. Acute reperfusion therapy and stroke care in Asia after successful endovascular trials. Stroke. 2015;46:1474–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang W, Jiang B, Sun H, Ru X, Sun D, Wang L, et al. Prevalence, incidence and mortality of stroke in china: results from a nationwide population-based survey of 480,687 adults. Circulation. 2017;135(8):759–71.CrossRefPubMedGoogle Scholar
  10. 10.
    van der Worp HB, van Gijn J. Clinical practice. Acute ischemic stroke. N Engl J Med. 2007;357:572–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Rha JH, Saver JL. The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke. 2007;38:967–73.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Del Zoppo GJ, Saver JL, Jauch EC, Adams HP Jr, American Heart Association Stroke Council. Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: a science advisory from the American Heart Association/American Stroke Association. Stroke. 2009;40:2945–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44:870–947.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Saver JL, Fonarow GC, Smith EE, Reeves MJ, Grau-Sepulveda MV, Pan W, et al. Time to treatment with intravenous tissue plasminogen activator and outcome from acute ischemic stroke. JAMA. 2013;309:2480–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, et al. Activation of pdgf-cc by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med. 2008;14:731–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang L, Fan W, Cai P, Fan M, Zhu X, Dai Y, et al. Recombinant adamts13 reduces tissue plasminogen activator-induced hemorrhage after stroke in mice. Ann Neurol. 2013;73:189–98.CrossRefPubMedGoogle Scholar
  17. 17.
    Chevilley A, Lesept F, Lenoir S, Ali C, Parcq J, Vivien D. Impacts of tissue-type plasminogen activator (tpa) on neuronal survival. Front Cell Neurosci. 2015;9:415.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lo EH, Broderick JP, Moskowitz MA. Tpa and proteolysis in the neurovascular unit. Stroke. 2004;35:354–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang X, Rosell A, Lo EH. Targeting extracellular matrix proteolysis for hemorrhagic complications of tpa stroke therapy. CNS Neurol Disord Drug Targets. 2008;7:235–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Yong VW. Metalloproteinases: mediators of pathology and regeneration in the cns. Nat Rev Neurosci. 2005;6:931–44.CrossRefPubMedGoogle Scholar
  21. 21.
    Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 2009;8:205–16.CrossRefPubMedGoogle Scholar
  22. 22.
    Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990;87:5578–82.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with bb-94. J Cereb Blood Flow Metab. 2000;20:1681–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Turner RJ, Sharp FR. Implications of mmp9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci. 2016;10:56.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dong X, Song YN, Liu WG, Guo XL. Mmp-9, a potential target for cerebral ischemic treatment. Curr Neuropharmacol. 2009;7:269–75.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chaturvedi M, Kaczmarek L. Mmp-9 inhibition: a therapeutic strategy in ischemic stroke. Mol Neurobiol. 2014;49:563–73.CrossRefPubMedGoogle Scholar
  27. 27.
    Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016;19:771–83.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Dirnagl U. Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann N Y Acad Sci. 2012;1268:21–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.CrossRefPubMedGoogle Scholar
  30. 30.
    Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57:173–85.CrossRefGoogle Scholar
  31. 31.
    Zlokovic BV. Remodeling after stroke. Nat Med. 2006;12:390–1.CrossRefPubMedGoogle Scholar
  32. 32.
    Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol. 2000;20:57–76.CrossRefPubMedGoogle Scholar
  33. 33.
    Stamatovic SM, Keep RF, Andjelkovic AV. Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol. 2008;6:179–92.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dorfel MJ, Huber O. Modulation of tight junction structure and function by kinases and phosphatases targeting occludin. J Biomed Biotechnol. 2012;2012:807356.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ni Y, Sun GY, Lee JC. TNFα alters occludin and cerebral endothelial permeability: role of p38MAPK. PLoS One. 2017;12(2):e0170346.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14:1398–405.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cai W, Liu H, Zhao J, Chen LY, Chen J, Lu Z, et al. Pericytes in brain injury and repair after ischemic stroke. Transl Stroke Res. 2017;8(2):107–21.CrossRefPubMedGoogle Scholar
  38. 38.
    Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468:557–61.CrossRefGoogle Scholar
  39. 39.
    Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T. What is a pericyte? J Cereb Blood Flow Metab. 2016;36:451–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Lassmann H, Zimprich F, Vass K, Hickey WF. Microglial cells are a component of the perivascular glia limitans. J Neurosci Res. 1991;28:236–43.CrossRefPubMedGoogle Scholar
  41. 41.
    Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3d reconstruction. Glia. 2010;58:1094–103.CrossRefPubMedGoogle Scholar
  42. 42.
    Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 2011;71:1018–39.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Barber AJ, Lieth E. Agrin accumulates in the brain microvascular basal lamina during development of the blood-brain barrier. Dev Dyn. 1997;208:62–74.CrossRefPubMedGoogle Scholar
  44. 44.
    Lukes A, Mun-Bryce S, Lukes M, Rosenberg GA. Extracellular matrix degradation by metalloproteinases and central nervous system diseases. Mol Neurobiol. 1999;19:267–84.CrossRefPubMedGoogle Scholar
  45. 45.
    Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr, del Zoppo GJ. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke. 2004;35:998–1004.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yurchenco PD, Amenta PS, Patton BL. Basement membrane assembly, stability and activities observed through a developmental lens. Matrix Biol. 2004;22:521–38.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, Opdenakker G, et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med. 2006;203:1007–19.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Baumann E, Preston E, Slinn J, Stanimirovic D. Post-ischemic hypothermia attenuates loss of the vascular basement membrane proteins, agrin and sparc, and the blood-brain barrier disruption after global cerebral ischemia. Brain Res. 2009;1269:185–97.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. 2010;64:328–63.CrossRefPubMedGoogle Scholar
  50. 50.
    Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development. 2004;131:2247–56.CrossRefPubMedGoogle Scholar
  51. 51.
    Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev. 2005;85:979–1000.CrossRefPubMedGoogle Scholar
  52. 52.
    Chen ZL, Haegeli V, Yu H, Strickland S. Cortical deficiency of laminin gamma1 impairs the akt/gsk-3beta signaling pathway and leads to defects in neurite outgrowth and neuronal migration. Dev Biol. 2009;327:158–68.CrossRefPubMedGoogle Scholar
  53. 53.
    Coles EG, Gammill LS, Miner JH, Bronner-Fraser M. Abnormalities in neural crest cell migration in laminin alpha5 mutant mice. Dev Biol. 2006;289:218–28.CrossRefPubMedGoogle Scholar
  54. 54.
    Cui J, Chen S, Zhang C, Meng F, Wu W, Hu R, et al. Inhibition of mmp-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Mol Neurodegener. 2012;7:21.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, et al. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci. 2005;25:6401–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Sorokin L, Girg W, Gopfert T, Hallmann R, Deutzmann R. Expression of novel 400-kda laminin chains by mouse and bovine endothelial cells. Eur J Biochem. 1994;223:603–10.CrossRefPubMedGoogle Scholar
  57. 57.
    Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in t cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol. 2001;153:933–46.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tilling T, Engelbertz C, Decker S, Korte D, Huwel S, Galla HJ. Expression and adhesive properties of basement membrane proteins in cerebral capillary endothelial cell cultures. Cell Tissue Res. 2002;310:19–29.CrossRefPubMedGoogle Scholar
  59. 59.
    Menezes MJ, McClenahan FK, Leiton CV, Aranmolate A, Shan X, Colognato H. The extracellular matrix protein laminin alpha2 regulates the maturation and function of the blood-brain barrier. J Neurosci. 2014;34:15260–80.CrossRefPubMedGoogle Scholar
  60. 60.
    Yao Y, Chen ZL, Norris EH, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep. 2016;6:36450.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994;124:619–26.CrossRefPubMedGoogle Scholar
  63. 63.
    Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 2002;297:1186–90.CrossRefPubMedGoogle Scholar
  64. 64.
    Li L, Liu F, Welser-Alves JV, McCullough LD, Milner R. Upregulation of fibronectin and the alpha5beta1 and alphavbeta3 integrins on blood vessels within the cerebral ischemic penumbra. Exp Neurol. 2012;233:283–91.CrossRefPubMedGoogle Scholar
  65. 65.
    Chen ZL, Yao Y, Norris EH, Kruyer A, Jno-Charles O, Akhmerov A, et al. Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J Cell Biol. 2013;202:381–95.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wagner S, Tagaya M, Koziol JA, Quaranta V, del Zoppo GJ. Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin alpha 6 beta 4 during focal cerebral ischemia/reperfusion. Stroke. 1997;28:858–65.CrossRefPubMedGoogle Scholar
  67. 67.
    Tagaya M, Haring HP, Stuiver I, Wagner S, Abumiya T, Lucero J, et al. Rapid loss of microvascular integrin expression during focal brain ischemia reflects neuron injury. J Cereb Blood Flow Metab. 2001;21:835–46.CrossRefPubMedGoogle Scholar
  68. 68.
    Milner R, Hung S, Wang X, Spatz M, del Zoppo GJ. The rapid decrease in astrocyte-associated dystroglycan expression by focal cerebral ischemia is protease-dependent. J Cereb Blood Flow Metab. 2008;28:812–23.CrossRefPubMedGoogle Scholar
  69. 69.
    Chen ZL, Strickland S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell. 1997;91:917–25.CrossRefPubMedGoogle Scholar
  70. 70.
    Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol. 2013;4:32.PubMedPubMedCentralGoogle Scholar
  71. 71.
    del Zoppo GJ. The neurovascular unit, matrix proteases, and innate inflammation. Ann N Y Acad Sci. 2010;1207:46–9.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kawakita K, Kawai N, Kuroda Y, Yasashita S, Nagao S. Expression of matrix metalloproteinase-9 in thrombin-induced brain edema formation in rats. J Stroke Cerebrovasc Dis. 2006;15:88–95.CrossRefPubMedGoogle Scholar
  73. 73.
    Li L, Tao Y, Tang J, Chen Q, Yang Y, Feng Z, et al. A cannabinoid receptor 2 agonist prevents thrombin-induced blood-brain barrier damage via the inhibition of microglial activation and matrix metalloproteinase expression in rats. Transl Stroke Res. 2015;6:467–77.CrossRefPubMedGoogle Scholar
  74. 74.
    Hadass O, Tomlinson BN, Gooyit M, Chen S, Purdy JJ, Walker JM, et al. Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury. PLoS One. 2013;8:e76904.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke. 2003;34:2165–70.CrossRefPubMedGoogle Scholar
  76. 76.
    Switzer JA, Hess DC, Ergul A, Waller JL, Machado LS, Portik-Dobos V, et al. Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke. 2011;42:2633–5.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Castellanos M, Leira R, Serena J, Pumar JM, Lizasoain I, Castillo J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke. 2003;34:40–6.CrossRefPubMedGoogle Scholar
  78. 78.
    Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001;21:7724–32.CrossRefPubMedGoogle Scholar
  79. 79.
    Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005;128:1622–33.CrossRefPubMedGoogle Scholar
  80. 80.
    Alluri H, Wilson RL, Anasooya Shaji C, Wiggins-Dohlvik K, Patel S, Liu Y, et al. Melatonin preserves blood-brain barrier integrity and permeability via matrix metalloproteinase-9 inhibition. PLoS One. 2016;11:e0154427.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hu X, De Silva TM, Chen J, Faraci FM. Cerebral vascular disease and neurovascular injury in ischemic stroke. Circ Res. 2017;120:449–71.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN, Shih AY. Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci. 2017;37:129–40.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007;27:697–709.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Mishiro K, Ishiguro M, Suzuki Y, Tsuruma K, Shimazawa M, Hara H. A broad-spectrum matrix metalloproteinase inhibitor prevents hemorrhagic complications induced by tissue plasminogen activator in mice. Neuroscience. 2012;205:39–48.CrossRefPubMedGoogle Scholar
  85. 85.
    Yang Y, Thompson JF, Taheri S, Salayandia VM, McAvoy TA, Hill JW, et al. Early inhibition of mmp activity in ischemic rat brain promotes expression of tight junction proteins and angiogenesis during recovery. J Cereb Blood Flow Metab. 2013;33:1104–14.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    del Zoppo GJ, von Kummer R, Hamann GF. Ischaemic damage of brain microvessels: inherent risks for thrombolytic treatment in stroke. J Neurol Neurosurg Psychiatry. 1998;65:1–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Koziol JA. Vascular matrix adhesion and the blood-brain barrier. Biochem Soc Trans. 2006;34:1261–6.CrossRefPubMedGoogle Scholar
  88. 88.
    Dore-Duffy P, Owen C, Balabanov R, Murphy S, Beaumont T, Rafols JA. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc Res. 2000;60:55–69.CrossRefPubMedGoogle Scholar
  89. 89.
    Liu S, Agalliu D, Yu C, Fisher M. The role of pericytes in blood-brain barrier function and stroke. Curr Pharm Des. 2012;18:3653–62.CrossRefPubMedGoogle Scholar
  90. 90.
    Fernandez-Klett F, Priller J. Diverse functions of pericytes in cerebral blood flow regulation and ischemia. J Cereb Blood Flow Metab. 2015;35:883–7.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508:55–60.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Dawson DA, Ruetzler CA, Hallenbeck JM. Temporal impairment of microcirculatory perfusion following focal cerebral ischemia in the spontaneously hypertensive rat. Brain Res. 1997;749:200–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med. 2009;15:1031–7.CrossRefPubMedGoogle Scholar
  94. 94.
    Nedelmann M, Ritschel N, Doenges S, Langheinrich AC, Acker T, Reuter P, et al. Combined contrast-enhanced ultrasound and rt-pa treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion. J Cereb Blood Flow Metab. 2010;30:1712–20.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    An H, Ford AL, Vo K, Eldeniz C, Ponisio R, Zhu H, et al. Early changes of tissue perfusion after tissue plasminogen activator in hyperacute ischemic stroke. Stroke. 2011;42:65–72.CrossRefPubMedGoogle Scholar
  96. 96.
    Al Ahmad A, Gassmann M, Ogunshola OO. Maintaining blood-brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol. 2009;218:612–22.CrossRefPubMedGoogle Scholar
  97. 97.
    Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One. 2010;5:e13741.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Takata F, Dohgu S, Matsumoto J, Takahashi H, Machida T, Wakigawa T, et al. Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-alpha, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation. 2011;8:106.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and timps are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke. 1998;29:2189–95.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis. 2010;38:376–85.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab. 1999;19:624–33.CrossRefPubMedGoogle Scholar
  102. 102.
    Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, et al. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Benchenane K, Berezowski V, Fernandez-Monreal M, Brillault J, Valable S, Dehouck MP, et al. Oxygen glucose deprivation switches the transport of tpa across the blood-brain barrier from an lrp-dependent to an increased lrp-independent process. Stroke. 2005;36:1065–70.CrossRefPubMedGoogle Scholar
  104. 104.
    Niego B, Medcalf RL. Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tpa-induced thrombolysis? J Cereb Blood Flow Metab. 2014;34:1283–96.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Aoki T, Sumii T, Mori T, Wang X, Lo EH. Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke. 2002;33:2711–7.CrossRefPubMedGoogle Scholar
  106. 106.
    Tsuji K, Aoki T, Tejima E, Arai K, Lee SR, Atochin DN, et al. Tissue plasminogen activator promotes matrix metalloproteinase-9 upregulation after focal cerebral ischemia. Stroke. 2005;36:1954–9.CrossRefPubMedGoogle Scholar
  107. 107.
    Wang X, Lee SR, Arai K, Lee SR, Tsuji K, Rebeck GW, et al. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat Med. 2003;9:1313–7.CrossRefPubMedGoogle Scholar
  108. 108.
    Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH. Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke. 2008;39:3372–7.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the ldl receptor-related protein. J Clin Invest. 2003;112:1533–40.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Montaner J, Molina CA, Monasterio J, Abilleira S, Arenillas JF, Ribo M, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation. 2003;107:598–603.CrossRefPubMedGoogle Scholar
  111. 111.
    Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372:2296–306.CrossRefPubMedGoogle Scholar
  112. 112.
    Rodrigues FB, Neves JB, Caldeira D, Ferro JM, Ferreira JJ, Costa J. Endovascular treatment versus medical care alone for ischaemic stroke: systematic review and meta-analysis. BMJ. 2016;353:i1754.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Ciccone A, Valvassori L, SYNTHESIS Expansion Investigators. Endovascular treatment for acute ischemic stroke. N Engl J Med. 2013;368:2433–4.CrossRefPubMedGoogle Scholar
  114. 114.
    Miao Z, Huo X, Gao F, Liao X, Wang C, Peng Y, et al. Endovascular therapy for Acute ischemic Stroke Trial (EAST): study protocol for a prospective, multicentre control trial in China. Stroke Vasc Neurol. 2016;1:e000022.Google Scholar
  115. 115.
    Pires PW, Rogers CT, McClain JL, Garver HS, Fink GD, Dorrance AM. Doxycycline, a matrix metalloprotease inhibitor, reduces vascular remodeling and damage after cerebral ischemia in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol. 2011;301:H87–97.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Fagan SC, Cronic LE, Hess DC. Minocycline development for acute ischemic stroke. Transl Stroke Res. 2011;2:202–8.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Chen W, Hartman R, Ayer R, Marcantonio S, Kamper J, Tang J, et al. Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain. J Neurochem. 2009;111:726–36.CrossRefPubMedGoogle Scholar
  118. 118.
    Lapchak PA, Chapman DF, Zivin JA. Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke. 2000;31:3034–40.CrossRefPubMedGoogle Scholar
  119. 119.
    Lampl Y, Boaz M, Gilad R, Lorberboym M, Dabby R, Rapoport A, et al. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology. 2007;69:1404–10.CrossRefPubMedGoogle Scholar
  120. 120.
    Kohler E, Prentice DA, Bates TR, Hankey GJ, Claxton A, van Heerden J, et al. Intravenous minocycline in acute stroke: a randomized, controlled pilot study and meta-analysis. Stroke. 2013;44:2493–9.CrossRefPubMedGoogle Scholar
  121. 121.
    Gooyit M, Suckow MA, Schroeder VA, Wolter WR, Mobashery S, Chang M. Selective gelatinase inhibitor neuroprotective agents cross the blood-brain barrier. ACS Chem Neurosci. 2012;3:730–6.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Stroke Council American Heart Association, American Stroke Association. Statins after ischemic stroke and transient ischemic attack: an advisory statement from the Stroke Council, American Heart Association and American Stroke Association. Stroke. 2004;35:1023.Google Scholar
  123. 123.
    McFarland AJ, Anoopkumar-Dukie S, Arora DS, Grant GD, McDermott CM, Perkins AV, et al. Molecular mechanisms underlying the effects of statins in the central nervous system. Int J Mol Sci. 2014;15:20607–37.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Reuter B, Rodemer C, Grudzenski S, Meairs S, Bugert P, Hennerici MG, et al. Effect of simvastatin on mmps and timps in human brain endothelial cells and experimental stroke. Transl Stroke Res. 2015;6:156–9.CrossRefPubMedGoogle Scholar
  125. 125.
    Shang J, Yamashita T, Kono S, Morihara R, Nakano Y, Fukui Y, et al. Effects of pretreatment with warfarin or rivaroxaban on neurovascular unit dissociation after tissue plasminogen activator thrombolysis in ischemic rat brain. J Stroke Cerebrovasc Dis. 2016;25:1997–2003.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shanyan Chen
    • 1
    • 2
  • Hailong Song
    • 1
    • 2
  • Jiankun Cui
    • 2
    • 3
  • Joel I. Shenker
    • 4
  • Yujie Chen
    • 5
  • Grace Y. Sun
    • 2
    • 6
  • Hua Feng
    • 5
  • Zezong Gu
    • 2
    • 3
    Email author
  1. 1.Interdisciplinary Neuroscience ProgramUniversity of Missouri School of MedicineColumbiaUSA
  2. 2.Department of Pathology and Anatomical SciencesUniversity of Missouri School of MedicineColumbiaUSA
  3. 3.Harry S. Truman Memorial Veterans’ Hospital Research ServiceColumbiaUSA
  4. 4.Department of NeurologyUniversity of Missouri School of MedicineColumbiaUSA
  5. 5.Department of Neurosurgery, Southwest HospitalThird Military Medical UniversityChongqingChina
  6. 6.Department of BiochemistryUniversity of Missouri School of MedicineColumbiaUSA

Personalised recommendations