Advertisement

Adolescence and Scoliosis: Deciphering the Complex Biology of Puberty and Scoliosis

  • Jeremy McCallum-Loudeac
  • Megan J. Wilson
Chapter

Abstract

Adolescent idiopathic scoliosis (AIS) is the most common paediatric spinal disorder, affecting 2–5.2% of the population. Individuals with AIS have, for a long time, been known to exhibit differences in weight, height, body mass index (BMI), pubertal progression and levels of circulating hormones, suggesting that AIS may arise due to metabolism-endocrine-gene interactions. Here, we present an overview of biological changes that occur during puberty, in relation to the developing spine, along with the pathways involved, with an emphasis on those linked to AIS through recent human genetic studies.

References

  1. 1.
    Abreu AP, Kaiser UB. Pubertal development and regulation. Lancet Diabetes Endocrinol. 2016;4:254–64.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Adobor RD, Riise RB, Sorensen R, Kibsgard TJ, Steen H, Brox JI. Scoliosis detection, patient characteristics, referral patterns and treatment in the absence of a screening program in Norway. Scoliosis. 2012;7:18.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Aksglaede L, Olsen LW, Sorensen TI, Juul A. Forty years trends in timing of pubertal growth spurt in 157,000 Danish school children. PLoS One. 2008;3:e2728.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Arfai K, Pitukcheewanont PD, Goran MI, Tavare CJ, Heller L, Gilsanz V. Bone, muscle, and fat: sex-related differences in prepubertal children. Radiology. 2002;224:338–44.CrossRefPubMedGoogle Scholar
  5. 5.
    Arslanian S, Suprasongsin C, Kalhan SC, Drash AL, Brna R, Janosky JE. Plasma leptin in children: relationship to puberty, gender, body composition, insulin sensitivity, and energy expenditure. Metabolism. 1998;47:309–12.CrossRefPubMedGoogle Scholar
  6. 6.
    Azeddine B, Letellier K, Wang da S, Moldovan F, Moreau A. Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis. Clin Orthop Relat Res. 2007;462:45–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Baker ER. Body weight and the initiation of puberty. Clin Obstet Gynecol. 1985;28:573–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Banks WA. Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des. 2001;7:125–33.CrossRefPubMedGoogle Scholar
  9. 9.
    Blum WF, Englaro P, Hanitsch S, Juul A, Hertel NT, Muller J, et al. Plasma leptin levels in healthy children and adolescents: dependence on body mass index, body fat mass, gender, pubertal stage, and testosterone. J Clin Endocrinol Metab. 1997;82:2904–10.PubMedGoogle Scholar
  10. 10.
    Canavese F, Dimeglio A. Normal and abnormal spine and thoracic cage development. World J Orthod. 2013;4:167–74.CrossRefGoogle Scholar
  11. 11.
    Canavese F, Kaelin A. Adolescent idiopathic scoliosis: indications and efficacy of nonoperative treatment. Indian J Orthop. 2011;45:7–14.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Charles YP, Daures JP, de Rosa V, Dimeglio A. Progression risk of idiopathic juvenile scoliosis during pubertal growth. Spine. 2006;31:1933–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Choudhry MN, Ahmad Z, Verma R. Adolescent idiopathic scoliosis. Open Orthop J. 2016;10:143–54.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Clark EM, Taylor HJ, Harding I, Hutchinson J, Nelson I, Deanfield JE, et al. Association between components of body composition and scoliosis: a prospective cohort study reporting differences identifiable before the onset of scoliosis. J Bone Miner Res. 2014;29:1729–36.CrossRefPubMedGoogle Scholar
  15. 15.
    Crowley SJ, Acebo C, Carskadon MA. Human puberty: salivary melatonin profiles in constant conditions. Dev Psychobiol. 2012;54:468–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med. 2013;19:197–209.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Demirkiran G, Dede O, Yalcin N, Akel I, Marcucio R, Acaroglu E. Selective estrogen receptor modulation prevents scoliotic curve progression: radiologic and histomorphometric study on a bipedal C57Bl6 mice model. Eur Spine J. 2014;23:455–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Dimeglio A, Canavese F. The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J. 2012;21:64–70.CrossRefPubMedGoogle Scholar
  19. 19.
    Dimeglio A, Canavese F, Bonnel F. Normal growth of the spine and thorax. Berlin/Heidelberg: Springer-Verlag; 2016.CrossRefGoogle Scholar
  20. 20.
    Fagan AB, Kennaway DJ, Sutherland AD. Total 24-hour melatonin secretion in adolescent idiopathic scoliosis. A case-control study. Spine. 1998;23:41–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Girardo M, Bettini N, Dema E, Cervellati S. The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). Eur Spine J. 2011;20(Suppl 1):S68–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Granados A, Gebremariam A, Lee JM. Relationship between timing of peak height velocity and pubertal staging in boys and girls. J Clin Res Pediatr Endocrinol. 2015;7:235–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Herbison AE. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat Rev Endocrinol. 2016;12:452–66.CrossRefPubMedGoogle Scholar
  24. 24.
    Inoue M, Minami S, Nakata Y, Kitahara H, Otsuka Y, Isobe K, et al. Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine. 2002;27:2357–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Iwamuro S, Sakakibara M, Terao M, Ozawa A, Kurobe C, Shigeura T, et al. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen Comp Endocrinol. 2003;133:189–98.CrossRefPubMedGoogle Scholar
  26. 26.
    Janusz P, Kotwicka M, Andrusiewicz M, Czaprowski D, Czubak J, Kotwicki T. Estrogen receptors genes polymorphisms and age at menarche in idiopathic scoliosis. BMC Musculoskelet Disord. 2014;15:383.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kaplowitz PB. Link between body fat and the timing of puberty. Pediatrics. 2008;121(Suppl 3):S208–17.CrossRefPubMedGoogle Scholar
  28. 28.
    Konieczny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. 2013;7:3–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Kouwenhoven JW, Castelein RM. The pathogenesis of adolescent idiopathic scoliosis: review of the literature. Spine. 2008;33:2898–908.CrossRefPubMedGoogle Scholar
  30. 30.
    Leboeuf D, Letellier K, Alos N, Edery P, Moldovan F. Do estrogens impact adolescent idiopathic scoliosis? Trends Endocrinol Metab. 2009;20:147–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Leung KC, Johannsson G, Leong GM, Ho KK. Estrogen regulation of growth hormone action. Endocr Rev. 2004;25:693–721.CrossRefPubMedGoogle Scholar
  32. 32.
    Liang G, Gao W, Liang A, Ye W, Peng Y, Zhang L, Sharma S, Su P, Huang D. Normal leptin expression, lower adipogenic ability, decreased leptin receptor and hyposensitivity to leptin in adolescent idiopathic scoliosis. PLoS One. 2012;7:e36648.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Little DG, Song KM, Katz D, Herring JA. Relationship of peak height velocity to other maturity indicators in idiopathic scoliosis in girls. J Bone Joint Surg Am. 2000;82:685–93.CrossRefPubMedGoogle Scholar
  34. 34.
    Liu Z, Tam EM, Sun GQ, Lam TP, Zhu ZZ, Sun X, et al. Abnormal leptin bioavailability in adolescent idiopathic scoliosis: an important new finding. Spine. 2012;37:599–604.CrossRefPubMedGoogle Scholar
  35. 35.
    Liu Z, Wang F, Xu LL, Sha SF, Zhang W, Qiao J, et al. Polymorphism of rs2767485 in leptin receptor gene is associated with the occurrence of adolescent idiopathic scoliosis. Spine. 2015;40:1593–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Loncar-Dusek M, Pecina M, Prebeg Z. A longitudinal study of growth velocity and development of secondary gender characteristics versus onset of idiopathic scoliosis. Clin Orthop Relat Res. 1991:278–82.Google Scholar
  37. 37.
    Lonstein JE, Carlson JM. The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am. 1984;66:1061–71.CrossRefPubMedGoogle Scholar
  38. 38.
    Luna AM, Wilson DM, Wibbelsman CJ, Brown RC, Nagashima RJ, Hintz RL, et al. Somatomedins in adolescence: a cross-sectional study of the effect of puberty on plasma insulin-like growth factor I and II levels. J Clin Endocrinol Metab. 1983;57:268–71.CrossRefPubMedGoogle Scholar
  39. 39.
    Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1:1155–61.CrossRefPubMedGoogle Scholar
  40. 40.
    Man GC, Wang WW, Yeung BH, Lee SK, Ng BK, Hung WY, et al. Abnormal proliferation and differentiation of osteoblasts from girls with adolescent idiopathic scoliosis to melatonin. J Pineal Res. 2010;49:69–77.PubMedGoogle Scholar
  41. 41.
    Man GC, Wong JH, Wang WW, Sun GQ, Yeung BH, Ng TB, et al. Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis. J Pineal Res. 2011;50:395–402.CrossRefPubMedGoogle Scholar
  42. 42.
    Mannion AF, Meier M, Grob D, Muntener M. Paraspinal muscle fibre type alterations associated with scoliosis: an old problem revisited with new evidence. Eur Spine J. 1998;7:289–93.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mao SH, Jiang J, Sun X, Zhao Q, Qian BP, Liu Z, et al. Timing of menarche in Chinese girls with and without adolescent idiopathic scoliosis: current results and review of the literature. Eur Spine J. 2011;20:260–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Margetic S, Gazzola C, Pegg GG, Hill RA. Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord. 2002;26:1407–33.CrossRefPubMedGoogle Scholar
  45. 45.
    Maria S, Witt-Enderby PA. Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. J Pineal Res. 2014;56:115–25.CrossRefPubMedGoogle Scholar
  46. 46.
    Marshall WA, Tanner JM. Growth and physiological development during adolescence. Annu Rev Med. 1968;19:283–300.CrossRefPubMedGoogle Scholar
  47. 47.
    Mauras N, Rogol AD, Haymond MW, Veldhuis JD. Sex steroids, growth hormone, insulin-like growth factor-1: neuroendocrine and metabolic regulation in puberty. Horm Res. 1996;45:74–80.CrossRefPubMedGoogle Scholar
  48. 48.
    Mendis-Handagama SM, Ariyaratne HB. Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod. 2001;65:660–71.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Moon ES, Kim HS, Sharma V, Park JO, Lee HM, Moon SH, et al. Analysis of single nucleotide polymorphism in adolescent idiopathic scoliosis in Korea: for personalized treatment. Yonsei Med J. 2013;54:500–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Moreau A, Wang DS, Forget S, Azeddine B, Angeloni D, Fraschini F, et al. Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine. 2004;29:1772–81.CrossRefPubMedGoogle Scholar
  51. 51.
    Ng KY, Leong MK, Liang H, Paxinos G. Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct. 2017;222:2921.CrossRefPubMedGoogle Scholar
  52. 52.
    Nikolova S, Yablanski V, Vlaev E, Getova G, Atanasov V, Stokov L, et al. In search of biomarkers for idiopathic scoliosis: leptin and BMP4 functional polymorphisms. J Biomark. 2015a;2015:425310.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nikolova S, Yablanski V, Vlaev E, Stokov L, Savov A, Kremensky I. Association between estrogen receptor alpha gene polymorphisms and susceptibility to idiopathic scoliosis in Bulgarian patients: a case-control study. Open Access Maced J Med Sci. 2015b;3:278–82.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Nikolova S, Yablanski V, Vlaev E, Stokov L, Savov AS, Kremensky IM. Association study between idiopathic scoliosis and polymorphic variants of VDR, IGF-1, and AMPD1 genes. Genet Res Int. 2015c;2015:852196.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Normelli H, Sevastik J, Ljung G, Aaro S, Jonsson-Soderstrom AM. Anthropometric data relating to normal and scoliotic Scandinavian girls. Spine. 1985;10:123–6.CrossRefPubMedGoogle Scholar
  56. 56.
    Onaolapo OJ, Onaolapo AY. Melatonin, adolescence, and the brain: an insight into the period-specific influences of a multifunctional signaling molecule. Birth Defects Res. 2017;109:1659–71.CrossRefPubMedGoogle Scholar
  57. 57.
    Peng Y, Liang G, Pei Y, Ye W, Liang A, Su P. Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int Orthop. 2012;36:671–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Prossnitz ER, Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat Rev Endocrinol. 2011;7:715–26.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Qiu XS, Tang NL, Yeung HY, Lee KM, Hung VW, Ng BK, et al. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine. 2007a;32:1748–53.CrossRefPubMedGoogle Scholar
  60. 60.
    Qiu XS, Tang NL, Yeung HY, Qiu Y, Cheng JC. Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res. 2007b;462:53–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Qiu Y, Sun X, Qiu X, Li W, Zhu Z, Zhu F, et al. Decreased circulating leptin level and its association with body and bone mass in girls with adolescent idiopathic scoliosis. Spine. 2007c;32:2703–10.CrossRefPubMedGoogle Scholar
  62. 62.
    Saggese G, Baroncelli GI, Bertelloni S. Puberty and bone development. Best Pract Res Clin Endocrinol Metab. 2002;16:53–64.CrossRefPubMedGoogle Scholar
  63. 63.
    Sharma G, Prossnitz ER. GPER/GPR30 knockout mice: effects of GPER on metabolism. Methods Mol Biol. 2016;1366:489–502.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Sharma G, Prossnitz ER. G-Protein-Coupled Estrogen Receptor (GPER) and sex-specific metabolic homeostasis. Adv Exp Med Biol. 2017;1043:427–53.CrossRefPubMedGoogle Scholar
  65. 65.
    Shi B, Mao S, Liu Z, Sun X, Zhu Z, Zhu F, et al. Spinal growth velocity versus height velocity in predicting curve progression in peri-pubertal girls with idiopathic scoliosis. BMC Musculoskelet Disord. 2016;17:368.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Simpson ER. Aromatization of androgens in women: current concepts and findings. Fertil Steril. 2002;77(Suppl 4):S6–10.CrossRefPubMedGoogle Scholar
  67. 67.
    Siu King Cheung C, Tak Keung Lee W, Kit Tse Y, Ping Tang S, Man Lee K, et al. Abnormal peri-pubertal anthropometric measurements and growth pattern in adolescent idiopathic scoliosis: a study of 598 patients. Spine. 2003;28:2152–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Srinivasan V, Spence WD, Pandi-Perumal SR, Zakharia R, Bhatnagar KP, Brzezinski A. Melatonin and human reproduction: shedding light on the darkness hormone. Gynecol Endocrinol. 2009;25:779–85.CrossRefPubMedGoogle Scholar
  69. 69.
    Stokes IA, Windisch L. Vertebral height growth predominates over intervertebral disc height growth in adolescents with scoliosis. Spine. 2006;31:1600–4.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sun Q, Cornelis MC, Kraft P, Qi L, van Dam RM, Girman CJ, et al. Genome-wide association study identifies polymorphisms in LEPR as determinants of plasma soluble leptin receptor levels. Hum Mol Genet. 2010;19:1846–55.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Takahashi Y, Matsumoto M, Karasugi T, Watanabe K, Chiba K, Kawakami N, et al. Lack of association between adolescent idiopathic scoliosis and previously reported single nucleotide polymorphisms in MATN1, MTNR1B, TPH1, and IGF1 in a Japanese population. J Orthop Res. 2011;29:1055–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Tam EM, Liu Z, Lam TP, Ting T, Cheung G, Ng BK, et al. Lower muscle mass and body fat in adolescent idiopathic scoliosis are associated with abnormal leptin bioavailability. Spine. 2016;41:940–6.CrossRefPubMedGoogle Scholar
  73. 73.
    Tang NL, Yeung HY, Lee KM, Hung VW, Cheung CS, Ng BK, et al. A relook into the association of the estrogen receptor [alpha] gene (PvuII, XbaI) and adolescent idiopathic scoliosis: a study of 540 Chinese cases. Spine. 2006;31:2463–8.CrossRefPubMedGoogle Scholar
  74. 74.
    Tanner JM, Whitehouse RH, Marubini E, Resele LF. The adolescent growth spurt of boys and girls of the Harpenden growth study. Ann Hum Biol. 1976;3:109–26.CrossRefPubMedGoogle Scholar
  75. 75.
    Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinol. 1999;140:1630–8.CrossRefGoogle Scholar
  76. 76.
    Ueno M, Takaso M, Nakazawa T, Imura T, Saito W, Shintani R, et al. A 5-year epidemiological study on the prevalence rate of idiopathic scoliosis in Tokyo: school screening of more than 250,000 children. J Orthop Sci. 2011;16:1–6.CrossRefPubMedGoogle Scholar
  77. 77.
    Wang W, Wang Z, Zhu Z, Zhu F, Qiu Y. Body composition in males with adolescent idiopathic scoliosis: a case-control study with dual-energy X-ray absorptiometry. BMC Musculoskelet Disord. 2016a;17:107.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wang YJ, Yu HG, Zhou ZH, Guo Q, Wang LJ, Zhang HQ. Leptin receptor metabolism disorder in primary chondrocytes from adolescent idiopathic scoliosis girls. Int J Mol Sci. 2016b;17. pii: E1160.CrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wei-Jun W, Xu S, Zhi-Wei W, Xu-Sheng Q, Zhen L, Yong Q. Abnormal anthropometric measurements and growth pattern in male adolescent idiopathic scoliosis. Eur Spine J. 2012;21:77–83.CrossRefPubMedGoogle Scholar
  80. 80.
    Weinstein SL, Ponseti IV. Curve progression in idiopathic scoliosis. J Bone Joint Surg Am. 1983;65:447–55.CrossRefPubMedGoogle Scholar
  81. 81.
    Weiss HR, Moramarco MM, Borysov M, Ng SY, Lee SG, Nan X, et al. Postural rehabilitation for adolescent idiopathic scoliosis during growth. Asian Spine J. 2016;10:570–81.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Wynne-Davies R. Familial (idiopathic) scoliosis. A family survey. J Bone Joint Surg Br. 1968;50:24–30.CrossRefPubMedGoogle Scholar
  83. 83.
    Yang M, Li C, Li M. The estrogen receptor alpha gene (XbaI, PvuII) polymorphisms and susceptibility to idiopathic scoliosis: a meta-analysis. J Orthop Sci. 2014;19:713–21.CrossRefPubMedGoogle Scholar
  84. 84.
    Yang M, Wei X, Yang W, Li Y, Ni H, Zhao Y, et al. The polymorphisms of melatonin receptor 1B gene (MTNR1B) (rs4753426 and rs10830963) and susceptibility to adolescent idiopathic scoliosis: a meta-analysis. J Orthop Sci. 2015;20:593–600.CrossRefPubMedGoogle Scholar
  85. 85.
    Yang Y, Wu Z, Zhao T, Wang H, Zhao D, Zhang J, et al. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics. 2009;32:411.CrossRefPubMedGoogle Scholar
  86. 86.
    Yasar P, Ayaz G, User SD, Gupur G, Muyan M. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Bio. 2017;16:4–20.CrossRefGoogle Scholar
  87. 87.
    Yeung HY, Tang NL, Lee KM, Ng BK, Hung VW, Kwok R, et al. Genetic association study of insulin-like growth factor-I (IGF-I) gene with curve severity and osteopenia in adolescent idiopathic scoliosis. Stud Health Technol Inform. 2006;123:18–24.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Ylikoski M. Growth and progression of adolescent idiopathic scoliosis in girls. J Pediatr Orthop B. 2005;14:320–4.CrossRefPubMedGoogle Scholar
  89. 89.
    Zamecnik J, Krskova L, Hacek J, Stetkarova I, Krbec M. Etiopathogenesis of adolescent idiopathic scoliosis: expression of melatonin receptors 1A/1B, calmodulin and estrogen receptor 2 in deep paravertebral muscles revisited. Mol Med Rep. 2016;14:5719–24.CrossRefPubMedGoogle Scholar
  90. 90.
    Zhao L, Roffey DM, Chen S. Association between the Estrogen Receptor Beta (ESR2) Rs1256120 single nucleotide polymorphism and adolescent idiopathic scoliosis: a systematic review and meta-analysis. Spine. 2017;42:871–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnatomyUniversity of OtagoDunedinNew Zealand

Personalised recommendations