Advertisement

Metallomics pp 183-211 | Cite as

Chemical Speciation and Metallomics

  • Jemmyson Romário de Jesus
  • Luana Ferreira da Costa
  • Eraldo Luiz Lehmann
  • Rodrigo Moretto Galazzi
  • Katherine Chacón Madrid
  • Marco Aurélio Zezzi Arruda
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1055)

Abstract

Chemical speciation approaches is an inherent part of metallomics, once metals/metalloids and organic structures need to be currently evaluated for attaining metallomics studies. Then, this chapter focuses on the applications of the chemical speciation applied to the human health risk, food and human diet, drugs, forensic, nanoscience, and geological metallomics, also pointing out the advances in such area. Some aspects regarding sample preparation is commented along this chapter, and some strategies for maintaining the integrity of the metallomics information are also emphasized.

Keywords

Healthy Food Nutrition Nanoscience Forensic Drugs Geochemistry 

Abbreviations

BIF

Banded iron formation

CE-ICP-MS

Capillary electrophoresis-inductively coupled plasma mass spectrometry

DNA

Deoxyribonucleic acid

ESI-FAIMS-IT-MS

Electrospray ionization-high-field asymmetric waveform ion mobility spectrometry-ion trap-mass spectrometry

ICP-MS

Inductively coupled plasma mass spectrometry

LC

Liquid chromatography

LC-ICP-MS

Liquid chromatography-inductively coupled plasma mass spectrometry

LC-MS/MS

Liquid chromatography-tandem mass spectrometry

nanoESI-Q-TOF

Nano-electrospray ionization quadrupole time-of-flight

nanoSIMS

Nanoscale secondary ion mass spectrometry

RP-HPLC-UV-ESI-MS

Reversed-phase high-performance liquid chromatography-ultraviolet-electrospray ionization spectrometry analysis

SEC-UV

Size-exclusion chromatography

Notes

Acknowledgments

The authors gratefully acknowledges the financial support of Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP; the Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq; and Financiadora de Estudos e Projetos, FINEP.

References

  1. Abad-Alvaro I, Bolea E, Laborda F, Castillo JR (2017) An ICP-MS-based platform for release studies on silver-based nanomaterials. J Anal At Spectrom 32(6):1101–1108CrossRefGoogle Scholar
  2. Aleksenko SS, Matczuk M, Lu X, Foteeva LS, Pawlak K, Timerbaev AR, Jarosz M (2013) Metallomics for drug development: an integrated CE-ICP-MS and ICP-MS approach reveals the speciation changes for an investigational ruthenium(III) drug bound to holo-transferrin in simulated cancer cytosol. Metallomics 5(8):955-963PubMedCrossRefPubMedCentralGoogle Scholar
  3. Anbar AD (2008) Elements and Evolution. Science 322:1481–1483PubMedCrossRefPubMedCentralGoogle Scholar
  4. Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15:1896–1922CrossRefGoogle Scholar
  5. Arita A, Costa M (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1(845):222–228PubMedPubMedCentralCrossRefGoogle Scholar
  6. Arruda MAZ, Azevedo RA (2009) Metallomics and chemical speciation: towards a better understanding of metal-induced stress in plants. Ann Appl Biol 155:301–307CrossRefGoogle Scholar
  7. Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705PubMedCrossRefPubMedCentralGoogle Scholar
  8. Azrieli-Tal I, Matthews A, Bar-Matthews M, Almogi-abin A, Vance D, Archer C, Teutsch N (2014) Evidence from molybdenum and iron isotopes and molybdenum–uranium covariation for sulphidic bottom waters during Eastern Mediterranean sapropel S1 formation. Earth Planet Sci Lett 393:231–242CrossRefGoogle Scholar
  9. Battistuzzi FU, Feijao A, Hedges B (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4(1):1–14CrossRefGoogle Scholar
  10. Beller GA, Bergmann SR (2004) Myocardial perfusion imaging agents: SPECT and PET. J Nucl Cardiol 11:71–86PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brenneckaa GA, Herrmanna AD, Algeoc TJ, Anbar AD (2011) Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc Natl Acad Sci U S A 108(43):17631–17634CrossRefGoogle Scholar
  12. Brombach C-C, Manorut P, Kolambage-Dona PPP, Ezzeldin MF, Chen B, Corns WT, Feldmann J, Krupp EM (2017) Methylmercury varies more than one order of magnitude in commercial European rice. Food Chem 214:360–365PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cacho C, Brito B, Palacios J, Pérez-Conde C, Cámara C (2010) Speciation of nickel by HPLC-UV/MS in pea nodules. Talanta 83:78–83PubMedCrossRefPubMedCentralGoogle Scholar
  14. Cairo G, Recalcati S (2007) Iron-regulatory proteins: molecular biology and pathophysiological implications. Expert Rev Mol Med 9(33):1–13PubMedPubMedCentralCrossRefGoogle Scholar
  15. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396(1):450–452CrossRefGoogle Scholar
  16. Carvalho WM, Fukushima AR, Fontes LR, Fuzinato DV, Florio JC, Chasin AAM (2013) Cocaine postmortem distribution in three brain structure: a comparison with whole blood and vitreous humos. J Forensic Legal Med 20:143–145CrossRefGoogle Scholar
  17. Chellan P, Sadler PJ (2016) The elements of life and medicines. Philos Trans A Math Phys Eng Sci 373:20140182CrossRefGoogle Scholar
  18. Chen JY, Tsao GC, Zhao Q, Zheng W (2001) Differential cytotoxicity of Mn(II) and Mn(III): special referenceto mitochondrial [Fe-S] containing enzymes. Toxicol Appl Pharmacol 175(2):160–168PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cheyns K, Waegeneers N, de Wiele TV, Ruttens A (2017) Arsenic release from foodstuffs upon food preparation. J Agric Food Chem 65:2443–2453PubMedCrossRefPubMedCentralGoogle Scholar
  20. Costa JL, Morrone AR, Resende RR, Chasin AAM, Tavares MFM (2014) Development of a method for the analysis of drugs of abuse in vitreous humor by capillary electrophoresis with diode array detection (CE–DAD). J Chromatogr B 945–946:84–91CrossRefGoogle Scholar
  21. Crusius J, Calve S, Pedersen T, Sage D (1996) Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet Sci Lett 145:65–78CrossRefGoogle Scholar
  22. Cunha RLOR, Gouvea IE, Juliano L (2009) A glimpse on biological activities of tellurium compounds. An Acad Bras Cienc 81:393–407PubMedCrossRefPubMedCentralGoogle Scholar
  23. Day JMD, Walker RJ, Warren JM (2017) 186Os–187Os and highly siderophile element abundance systematics of the mantle revealed by abyssal peridotites and Os-rich alloys. Geochim Cosmochim Acta 200(1):232–254CrossRefGoogle Scholar
  24. de Bie P, Muller P, Wijmenga C, Klomp LWJ (2007) Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes. J Med Genet 44(11):673–688PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dickson AJ, Cohen AS, Coe AL (2014) Continental margin molybdenum isotope signatures from the early Eocene. Earth Planet Sci Lett 404:389–395CrossRefGoogle Scholar
  26. Dupont CL, Yang S, Palenik B, Bourne PE (2006) Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc Natl Acad Sci U S A 103(47):17822–17827PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dupont CL, Butcher A, Valas RE, Bourned PE, Caetano-Anollés G (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci U S A 107(23):10567–10572PubMedPubMedCentralCrossRefGoogle Scholar
  28. Easter RN, Qilin C, Lai B, Ritman EL, Caruso JA, Zhenyu Q (2010) Vascular metallomics: copper in the vasculature. Vasc Med 15(1):61–69PubMedCrossRefPubMedCentralGoogle Scholar
  29. Emerson SR, Huested SS (1991) Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar Chem 34:177–197CrossRefGoogle Scholar
  30. Esteban-Fernández D, Moreno-Gordaliza E, Cañas B, Palaciosa MA, Gómez-Gómez MM (2010) Analytical methodologies for metallomics studies of antitumor Pt-containing drugs. Metallomics 2:19–38PubMedCrossRefPubMedCentralGoogle Scholar
  31. Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449(1):706–709PubMedCrossRefPubMedCentralGoogle Scholar
  32. Ganio K, James SA, Hare DJ, Roberts BR, McColl G (2016) Accurate biometal quantification per individual Caenorhabditis elegans. Analyst 141:1434–1439PubMedCrossRefGoogle Scholar
  33. Gimenez Y, Busser B, Trichard F, Kulesza A, Laurent JM, Zaun V, Lux F, Benoit JM, Panczer G, Dugourd P, Tillement O, Pelascini F, Sancey L, Motto-Ros V (2016) 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep 6(29936):1–9Google Scholar
  34. Gómez-Ariza JL, Morales E, Giráldez I, Sánchez-Rodas D, Velasco A (2001) Sample treatment in chromatography-based speciation of organometallic pollutants. J Chromatogr A 938(1–2):211–224CrossRefGoogle Scholar
  35. Halpert G, Eitan T, Voronov E, Apte RN, Rath-Wolfson L, Albeck M, Kalechman Y, Sredni B (2014) Multifunctional activity of a small tellurium redox immunomodulator compound, AS101, on dextran sodium sulfate-induced murine colitis. J Biol Chem 289:17215–17227PubMedPubMedCentralCrossRefGoogle Scholar
  36. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5–14CrossRefGoogle Scholar
  37. Harris K, Armstrong SP, Campos-Pires R, Kiru L, Franks NP, Dickinson R (2013) Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-d-aspartate receptor glycine site. Anesthesiology 119:1137–1148PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hei TK, Liu SX, Waldren C (1998) Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci U S A 95(14):8103–8107PubMedPubMedCentralCrossRefGoogle Scholar
  39. Holland HD (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci 361:903–915PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hu LG, He B, Wang Y, Jiang G, Sun H (2013) Metallomics in environmental and health related research: current status and perspectives. Chin Sci Bull 58(2):169–176CrossRefGoogle Scholar
  41. Hu Y, Zhang W, Cheng H, Tao S (2017) Public Health Risk of Arsenic Species in Chicken Tissues from Live Poultry Markets of Guangdong Province, China. Environ Sci Technol 51:3508–3517PubMedCrossRefPubMedCentralGoogle Scholar
  42. Huang C, Ke Q, Costa M, Shi X (2004) Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem 255(1–2):57–66PubMedCrossRefPubMedCentralGoogle Scholar
  43. Ivanov AI, Christodoulou J, Parkinson JA, Barnham KJ, Tucker A, Woodrow J, Sadler PJ (1998) Cisplatin binding sites on human albumin. J Biol Chem 273:14721–14730PubMedCrossRefPubMedCentralGoogle Scholar
  44. Jenkis AJ, Oblock J (2008) Phencyclidine and cannabinoids in vitreous humor. Legal Med 10:201–203CrossRefGoogle Scholar
  45. Jitaru P, Millour S, Roman M, Koulali KE, Noël L, Guérin T (2016) Exposure assessment of arsenic speciation in different rice types depending on the cooking mode. J Food Compos Anal 54:37–47CrossRefGoogle Scholar
  46. Joseph P (2009) Mechanisms of cadmium carcinogenesis. Toxicol Appl Pharmacol 238(3):272–279PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kannamkumarath SS, Wrobel K, Wrobel K, B’Hymer C, Caruso JA (2002) Capillary electrophoresis-inductively coupled plasma-mass spectrometry: an attractive complementary technique for elemental speciation analysis. J Chromatogr A 975(2):245–266PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kasting JF (2005) Methane and climate during the Precambrian era. Precambrian Res 137(1):119–129CrossRefGoogle Scholar
  49. Kintz P, Ginet M, Marques N, Cirimele V (2007) Arsenic speciation of two specimens of Napoleon’s hair. Forensic Sci Int 170:204–206PubMedCrossRefPubMedCentralGoogle Scholar
  50. Konhauser KO, Pecoits E, Lalonde SV, Papineau D, Nisbet EG, Barley ME, Arndt NT, Zahnle K, Kamber BS (2009) Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458(1):750–753PubMedCrossRefGoogle Scholar
  51. Kralj B, Križaj I, Bukovec P (2005) Speciation of aluminium in tea infusions by use of SEC and FPLC with ICP-OES and ES-MS-MS detection. Anal Bioanal Chem 383:467–475PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kulkarni PP, She YM, Smith SD, Roberts EA, Sarkar B (2006) Proteomics of metal transport and metal-associated diseases. Chem Eur J 12(9):2410–2422PubMedCrossRefPubMedCentralGoogle Scholar
  53. La Fontaine S, Burke R, Giedroc DP (2016) Mammalian copper biology: hitting the pause button in celebration of three pioneers and four decades of discovery. Metallomics 8(9):810–812PubMedCrossRefGoogle Scholar
  54. Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowiat K, Zhitkovich A, Christie NT, Costa M (1995) Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 15(5):2547–2557PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lehmann EL, Fostier AH, Arruda MAZ (2013) Hydride generation using a metallic atomizer after microwave-assisted extraction for inorganic arsenic speciation in biological samples. Talanta 104:187–192PubMedCrossRefPubMedCentralGoogle Scholar
  56. Lendoiro E, Cordeiro C, Rodrıguéz-Calvo MS, Vieira DN, Suárez-Peñaranda MJ, López-Rivadulla M, Muñoz-Barús JI (2012) Applications of Tandem Mass Spectrometry (LC–MSMS) in estimating the post-mortem interval using the biochemistry of the vitreous humour. Forensic Sci Int 223(1–3):160–164PubMedCrossRefPubMedCentralGoogle Scholar
  57. Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW (2010) Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398:689–700PubMedCrossRefPubMedCentralGoogle Scholar
  58. Li Y-F, Gao Y, Chaiab Z, Chen C (2014) Nanometallomics: an emerging field studying the biological effects of metal-related nanomaterials. Metallomics 6:220–232PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ma C, White JC, Dhankher OP, Xing B (2015) Metal-based nanotoxicity and detoxification pathways in higher plants. Environ Sci Technol 49:7109–7122PubMedCrossRefPubMedCentralGoogle Scholar
  60. Malysheva A, Lombi E, Voelcker NH (2015) Bridging the divide between human and environmental nanotoxicology. Nat Nanotechnol 10:835–844PubMedCrossRefPubMedCentralGoogle Scholar
  61. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefPubMedGoogle Scholar
  62. Mandal R, Kalke R, Li X-F (2004) Interaction of oxaliplatin, cisplatin, and carboplatin with hemoglobin and the resulting release of a heme group. Chem Res Toxicol 17:1391–1397PubMedCrossRefPubMedCentralGoogle Scholar
  63. Mehennaoui K, Georgantzopoulou A, Felten V, Andreï J, Garaud M, Cambier S, Serchi T, Pain-Devin S, Guérold F, Audinot J-N, Giambérini L, Gutleb AC (2016) Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles. Sci Total Environ 566-567:1649–1659PubMedCrossRefPubMedCentralGoogle Scholar
  64. Montoya-Pino C, Weyer S, Anbar AD, Pross J, Oschmann W, Schootbrugge BV, Arz HW (2010) Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: a quantitative approach using U isotopes. Geol Soc Am 38(4):315–318Google Scholar
  65. Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev. 38(4):1119–1138 PubMedCrossRefPubMedCentralGoogle Scholar
  66. Nielsen FH (1999) Ultratrace minerals. In: Shils ME, Olsen JA, Shike M, Ross AC (eds) Modern nutrition in health and disease, 9th edn. Williams and Wilkins, Baltimore, MD, pp 283–303Google Scholar
  67. Oliveira SR, Arruda MAZ (2015) Application of laser ablation (imaging) inductively coupled plasma mass spectrometry for mapping and quantifying Fe in transgenic and non-transgenic soybean leaves. J Anal At Spectrom 30(2):389–395CrossRefGoogle Scholar
  68. Oller AR, Costa M, Oberdörster G (1997) Carcinogenicity assessment of selected nickel compounds. Toxicol Appl Pharmacol 143(1):152–166PubMedCrossRefPubMedCentralGoogle Scholar
  69. Ossipov K, Foteeva LS, Seregina IF, Perevalov SA, Timerbaev AR, Bolshov MA (2013) Metallomics for drug development: serum protein binding and analysis of an anticancer tris(8-quinolinolato)gallium(III) drug using inductively coupled plasma mass spectrometry. Anal Chim Acta 785:22–26PubMedCrossRefPubMedCentralGoogle Scholar
  70. Parnell J, Hole M, Boyce AJ, Spinks S, Bowden S (2012) Heavy metal, sex and granites: crustal differentiation and bioavailability in the mid-Proterozoic. Geology 40(8):751–754CrossRefGoogle Scholar
  71. Partin CA, Lalonde SV, Planavsky NJ, Bekker A, Rouxel OJ, Lyons TW, Konhauser KO (2013) Uranium in iron formations and the rise of atmospheric oxygen. Chem Geol 362:82–90CrossRefGoogle Scholar
  72. Peeters K, Zuliani T, Žigon D, Milačič R, Ščančar J (2017) Nickel speciation in cocoa infusions using monolithic chromatography – post-column ID-ICP-MS and Q-TOF-MS. Food Chem 230:327–335PubMedCrossRefPubMedCentralGoogle Scholar
  73. Peng L, He M, Chen B, Qiao Y, Hu B (2015) Metallomics study of CdSe/ZnS quantum dots in HepG2 cells. ACS Nano 9(10):10324–10334PubMedCrossRefPubMedCentralGoogle Scholar
  74. Peng J, Mandal R, Sawyer M, Li X-F (2005) Characterization of intact hemoglobin and oxaliplatin interaction by nanoelectrospray ionization tandem mass spectrometry. Clin Chem 51:2274–2281PubMedCrossRefPubMedCentralGoogle Scholar
  75. Pessôa GS, Capelo-Martínez JL, Fdez-Riverola F, López-Fernández H, Glez-Peña D, Reboiro-Jato M, Arruda MAZ (2016) Laser ablation and inductively coupled plasma mass spectrometry focusing on bioimaging from elemental distribution using MatLab software: a practical guide. J Anal At Spectrom 31(4):832–840CrossRefGoogle Scholar
  76. Pozebon D, Scheffler GL, Dressler VL (2017) Recent applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for biological sample analysis: a follow-up review. J Anal At Spectrom 32(5):890–919CrossRefGoogle Scholar
  77. Raab A, Fecher P, Feldmann J (2005) Determination of Arsenic in Algae – Results of an Interlaboratory Trial: Determination of Arsenic Species in the Water-Soluble Fraction. Microchim Acta 151:153–166CrossRefGoogle Scholar
  78. Ralser M (2014) The RNA world and the origin of metabolic enzymes. Biochem Soc Trans 42(4):985–988PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rezende HC, Almeida ILS, Coelho LM, Coelho NMM, Marques TL (2015) Non-chromatographic methods focused on speciation of arsenic and selenium in food and environmental samples. Sample Prep 2:31–48Google Scholar
  80. Sadee BA, Foulkes ME, Hill SJ (2016) A study of arsenic speciation in soil, irrigation water and plant tissue: a case study of the broad bean plant, Vicia faba. Food Chem 210:362–370PubMedCrossRefPubMedCentralGoogle Scholar
  81. Saito MA (2009) Less nickel for more oxygen. Nature 458(1):714–715PubMedCrossRefPubMedCentralGoogle Scholar
  82. Saito MA, Sigman DM, Morel FMM (2003) The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean/Proterozoic boundary? Inorg Chim Acta 356(1):308–318CrossRefGoogle Scholar
  83. Salnikow K, Zhitkovich A (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic and chromium. Chem Res Toxicol 21(1):28–44PubMedCrossRefPubMedCentralGoogle Scholar
  84. Santos Junior JC, Mollo Filho PC, Guidugli RBF, Eberlin MN, Pessôa GS, da Silva EG, Arruda MAZ, Hoeh NF (2014) Metals and (metallo)proteins identification in vitreous humor focusing on post-mortem biochemistry. Metallomics 6(10):1801–1807PubMedCrossRefPubMedCentralGoogle Scholar
  85. Sariego Muniz C, Gayón JMM, Alonso JIG, Sanz-Medel A (2001) Speciation of essential elements in human serum using anion-exchange chromatography coupled to post-column isotope dilution analysis with double focusing ICP-MS. J Anal At Spectrom 16(6):587–592CrossRefGoogle Scholar
  86. Ščančar J, Zuliani T, Milačič R (2013a) Study of nickel content in Ni-rich food products in Slovenia. J Food Compos Anal 32:83–89CrossRefGoogle Scholar
  87. Ščančar J, Zuliani T, Žigon D, Milačič R (2013b) Ni speciation in tea infusions by monolithic chromatography – ICP-MS and Q-TOF-MS. Anal Bioanal Chem 405:2041–2051PubMedCrossRefPubMedCentralGoogle Scholar
  88. Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW, Chu X, Anbar AD (2008) Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–459PubMedCrossRefPubMedCentralGoogle Scholar
  89. Scott C, Lyons TW (2012) Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chem Geol 324-325:19–27CrossRefGoogle Scholar
  90. Sevcenco AM, Pinkse MWH, Bol E, Krijger GC, Wolterbeek HT, Verhaert PEDM, Hagedoorna PL, Hagen WR (2009) The tungsten metallome of Pyrococcus furiosus. Metallomics 1:395–402PubMedCrossRefPubMedCentralGoogle Scholar
  91. Sevcenco AM, Pinkse MWH, Wolterbeek HT, Verhaert PEDM, Hagena WR, Hagedoorn PL (2011) Exploring the microbial metalloproteome using MIRAGE. Metallomics 3:1324–1330PubMedCrossRefPubMedCentralGoogle Scholar
  92. Shi W, Chance MR (2008) Metallomics and metalloproteomics. Cell Mol Life Sci 65(19):3040–3048PubMedCrossRefPubMedCentralGoogle Scholar
  93. Shi W, Chance MR (2011) Metalloproteomics: forward and reverse approaches in metalloprotein structural and functional characterization. Curr Opin Chem Biol 15(1):144–148PubMedCrossRefPubMedCentralGoogle Scholar
  94. Shi X, Zhu Y, Hua W, Ji Y, Ha Q, Han X, Liu Y, Gao J, Zhang Q, Liu S, Ren K, Wu X, Li H, Han D (2016) An in vivo study of the biodistribution of gold nanoparticles after intervaginal space injection in the tarsal tunnel. Nano Res 9(7):2097–2109CrossRefGoogle Scholar
  95. Shindo M, Torimoto Y, Saito H, Motomura W, Ikuta K, Sato K, Fujimoto Y, Kohgo Y (2006) Functional role of DMT1 in transferrin-independent iron uptake by human hepatocyte and hepatocellular carcinoma cell, HLF. Hepatol Res 35(3):152–162PubMedPubMedCentralGoogle Scholar
  96. Silva MO, Sussulini A, Arruda MAZ (2010) Metalloproteomics as an interdisciplinary area involving proteins and metals. Expert Rev Proteomics 7:387–400PubMedCrossRefPubMedCentralGoogle Scholar
  97. Soto-Alvaredo J, Montes-Bayón M, Bettmer J (2013) Speciation of silver nanoparticles and silver(I) by reversed-phase liquid chromatography coupled to ICPMS. Anal Chem 85:1316–1321PubMedCrossRefPubMedCentralGoogle Scholar
  98. Swain R, Kumar A, Sahoo J, Lakshmy R, Gupta SK, Bhardwaj DN, Pandey RM (2015) Estimation of post-mortem interval: a comparison between cerebrospinal fluid and vitreous humour chemistry. J Forensic Legal Med 36:144–148CrossRefGoogle Scholar
  99. Szpunar J (2004) Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem 378:54–56PubMedCrossRefPubMedCentralGoogle Scholar
  100. Takahashi N, Ortel TL, Putnam FW (1984) Single-chain structure of human ceruloplasmin: the complete amino acid sequence of the whole molecule. Proc Natl Acad Sci U S A 81:390–394PubMedPubMedCentralCrossRefGoogle Scholar
  101. Tan C-P, Lu Y-Y, Ji L-N, Mao Z-W (2014) Metallomics insights into the programmed cell death induced by metal-based anticancer compounds. Metallomics 6:978–995PubMedCrossRefPubMedCentralGoogle Scholar
  102. Taylor VF, Jackson BP (2016) Concentrations and speciation of arsenic in New England seaweed species harvested for food and agriculture. Chemosphere 163:6–13PubMedPubMedCentralCrossRefGoogle Scholar
  103. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144(1):2377–2406PubMedCrossRefPubMedCentralGoogle Scholar
  104. Thompson KH, Orvig C (2006) Metal complexes in medicinal chemistry: new vistas and challenges in drug design. Dalton Trans 6:761–764CrossRefGoogle Scholar
  105. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103:554–558PubMedCrossRefPubMedCentralGoogle Scholar
  106. Timerbaev AR (2016) Role of metallomic strategies in developing ruthenium anticancer drugs. Trends in Analytical Chemistry 80:547-554CrossRefGoogle Scholar
  107. Todd RC, Lippard SJ (2009) Inhibition of transcripton by platinum antitumor compounds. Metallomics 1:280–291PubMedPubMedCentralCrossRefGoogle Scholar
  108. Tout D, Tonge CM, Muthu S, Arumugam P (2012) Assessment of a protocol for routine simultaneous myocardial blood flow measurement and standard myocardial perfusion imaging with rubidium-82 on a high count rate positron emission tomography system. Nucl Med Commun 33:1202–1211PubMedCrossRefPubMedCentralGoogle Scholar
  109. Wagner M, Chappaz A, Lyons TW (2017) Molybdenum speciation and burial pathway in weakly sulfidic environments: insights from XAFS. Geochim Cosmochim Acta 206:18–29CrossRefGoogle Scholar
  110. Wang SJ, Wasylenki LE (2017) Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations. Geochim Cosmochim Acta 206(1):137–150CrossRefGoogle Scholar
  111. Wasylenki LE, Howe HD, Spivak-Birndorf LJ, Bish DL (2015) Ni isotope fractionation during sorption to ferrihydrite: implications for Ni in banded iron formations. Chem Geol 400(1):56–64CrossRefGoogle Scholar
  112. Williams RJP (2002) The fundamental nature of life as a chemical system: the part played by inorganic elements. J Inorg Biochem 88:241–250PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wilson RA, Yanes EG, Kemppainen RJ (2016) Iodine speciation in dog foods and treats by high performance liquid chromatography with inductively coupled plasma mass spectrometry detection. J Chromatogr B 1022:183–190CrossRefGoogle Scholar
  114. Yim SR, Park GY, Lee KW, Chung M-S, Shim S-M (2017) Determination of total arsenic content and arsenic speciation in different types of rice. Food Sci Biotechnol 26(1):293–298CrossRefGoogle Scholar
  115. Zerkle AI, House CH, Brantley SI (2005) Biogeochemical signatures through time as inferred from whole microbial genomes. Am J Sci 305:467–502CrossRefGoogle Scholar
  116. Zhang X, Cornelis R, de Kimpe J, Mees L, Lameiere N (1998) Study of arsenic-protein binding in serum of patients on continuous ambulatory peritoneal dialysis. Clin Chem 44(1):141–147PubMedPubMedCentralGoogle Scholar
  117. Zhitkovich A (2005) Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(VI). Chem Res Toxicol 18(1):3–11PubMedCrossRefPubMedCentralGoogle Scholar
  118. Zoorob GK, McKiernan JW, Caruso J (1998) ICP-MS for elemental speciation studies. Microchim Acta 128(3):145–168CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jemmyson Romário de Jesus
    • 1
    • 2
    • 3
  • Luana Ferreira da Costa
    • 1
    • 2
    • 3
  • Eraldo Luiz Lehmann
    • 1
    • 2
    • 3
  • Rodrigo Moretto Galazzi
    • 1
    • 2
    • 3
  • Katherine Chacón Madrid
    • 1
    • 2
    • 3
  • Marco Aurélio Zezzi Arruda
    • 1
    • 2
    • 3
  1. 1.Universidade Estadual de Campinas – UnicampCampinasBrazil
  2. 2.Spectrometry, Sample Preparation and Mechanization Group (GEPAM), Department of Analytical Chemistry, Institute of ChemistryUniversity of Campinas (UNICAMP)CampinasBrazil
  3. 3.National Institute of Science and Technology for Bioanalytics – INCTBio, Institute of Chemistry, University of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations