Metallomics pp 67-100 | Cite as

Metallomics Study in Plants Exposed to Arsenic, Mercury, Selenium and Sulphur

  • Jörg Feldmann
  • Katharina Bluemlein
  • Eva Maria KruppEmail author
  • Martin Mueller
  • Barry Alan Wood
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1055)


This chapter is focussing on the interaction of arsenic, mercury and selenium with plans. Aspects of biotransformations are discussed, before the analytical methodologies are listed and critically appraised in the second part. A holistic view is given, starting from the soil environment and continuing to the plant roots and the translocations into the upper part of the plants. Under different soil conditions, different kinds of elemental species are identified, which have an impact on how the elemental species are taken up by the plant. The uptake mechanisms of these elemental species are explained and compared before the biotransformation reactions of all elemental species in the plant root; their transport into the vacuoles and translocation to the leaves and grains are discussed. Here in particular the interaction with sulphur-rich phytochelatins is described for all three elemental species. Since the sulphur chemistry is so important for the uptake, bioaccumulation and translocation of the metals and metalloids, a subchapter about sulphur chemistry in plants has been added. All aspects of biotransformation dealt with in this chapter is finally rounded up by a thorough description of the analytical methodology given with a focus on the use of HPLC-ICPMS/ESI-MS for both quantitative and molecular analysis.


Arsenic Phytochelatins Mercury Selenium Sulphur ICP-MS ESI-MS Hyphenated techniques HPLC-ICPMS/ESI-MS 







Dimethylarsinic acid


Electrospray ionisation mass spectrometry




High performance liquid chromatography


Inductively coupled plasma mass spectrometry




Monomethylarsonious acid


Monomethylarsonic acid








Elemental selenium






Trimethylarsine oxide



The authors and especially M.M. thank the TESLA research fund for financial support.


  1. Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aborode FA, Raab A, Foster S, Lombi E, Maher W, Krupp EM, Feldmann J (2015) Selenopeptides and elemental selenium in Thunbergia alata after exposure to selenite: quantification method for elemental selenium. Metallomics 7:1056–1066PubMedCrossRefPubMedCentralGoogle Scholar
  3. Aborode FA, Raab A, Voigt M, Costa LM, Krupp EM, Feldmann J (2016) The importance of glutathione and phytochelatins on the selenite and arsenate detoxification in Arabidopsis thaliana. J Environ Sci 49:150–161CrossRefGoogle Scholar
  4. Aires A, Rosa E, Carvalho R (2006) Effect of nitrogen and sulfur fertilization on glucosinolates in the leaves and roots of broccoli sprouts (Brassica oleracea var. italica). J Sci Food Agric 86(10):1512–1516CrossRefGoogle Scholar
  5. Araie H, Sakamoto K, Suzuki I, Shiraiwa Y (2011) Characterization of the selenite uptake mechanism in the coccolithophore Emiliania huxleyi (Haptophyta). Plant Cell Physiol 52:1204–1210PubMedCrossRefPubMedCentralGoogle Scholar
  6. Assefa MK, von Tucher S, Schmidhalter U (2014) Soil sulfur availability due to mineralization: soil amended with biogas residues. J Soil Sci Environ Manag 5(1):13–19CrossRefGoogle Scholar
  7. Balík J, Kulhánek M, Černý J, Száková J, Pavlíková D, Čermák P (2009) Differences in soil sulfur fractions due to limitation of atmospheric deposition. Plant Soil Environ 55(8):344–352CrossRefGoogle Scholar
  8. Barałkiewicz D, Kózka M, Piechalak A, Tomaszewska B, Sobczak P (2009) Determination of cadmium and lead species and phytochelatins in pea (Pisum sativum) by HPLC–ICP-MS and HPLC–ESI-MSn. Talanta 79:493–498PubMedCrossRefGoogle Scholar
  9. Batista BL, Migar M, Mestrot A, Rocha BA, Júnior FB, Price AH, Raab A, Feldmann J (2014) Identification and quantification of phytochelatins in roots of rice to long-term exposure: evidence of individual role on arsenic accumulation and translocation. J Exp Bot 65:1467–1479PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bierla K, Szupunar J, Yiannikouris A, Lobinski R (2012) Comprehensive speciation of selenium in selenium-rich yeast. Trends Anal Chem 41:122–132CrossRefGoogle Scholar
  11. Bluemlein K, Raab A, Meharg AA, Charnock JM, Feldmann J (2008a) Can we trust mass spectrometry for determination of arsenicpeptides in plants: comparison of LC–ICP–MS and LC–ES-MS/ICP–MS with XANES/EXAFS in analysis of Thunbergia alata. Anal Bioanal Chem 390:1739–1751PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bluemlein K, Krupp EM, Feldmann J (2008b) Advantages and limitations of a desolvation system coupled online to HPLC-ICPqMS/ES-MS for the quantitative determination of sulfur and arsenic in arseno-peptide complexes. J Anal At Spectrom 24:108–113CrossRefGoogle Scholar
  13. Bluemlein K, Raab A, Feldmann J (2009a) Stability of arsenic peptides in plant extracts: off-line versus on-line parallel elemental and molecular mass spectrometric detection for liquid chromatographic separation. Anal Bioanal Chem 393:357–366PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bluemlein K, Klimm E, Raab A, Feldmann J (2009b) Selenite enhances arsenate toxicity in Thunbergia alata. Environ Chem 6:486–494CrossRefGoogle Scholar
  15. Blum SC, Lehmann J, Solomon D, Caires EF, Alleoni LRF (2013) Sulfur forms in organic substrates affecting S mineralization in soil. Geoderma 200:156–164CrossRefGoogle Scholar
  16. Bräutigam A, Wesenberg D, Preud’Homme H, Schaumloeffel D (2010) Rapid and simple UPLC-MS/MS method for precise phytochelatin quantification in alga extracts. Anal Bioanal Chem 398:877–883PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chan QL, Caruso JA (2012) A metallomics approach discovers selenium-containing proteins in selenium-enriched soybean. Anal Bioanal Chem 403:1311–1321PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chassaigne H, Vacchina V, Kutchan TM, Zenk MH (2001) Identification of phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro. Phytochemistry 56:657–668PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chen L, Yang L, Wang Q (2009) In vivo phytochelatins and Hg–phytochelatin complexes in Hg-stressed Brassica chinensis L. Metallomics 1:101–106CrossRefGoogle Scholar
  20. Chen Y, Han Y-H, Cao Y, Zhu Y-G, Rathinasabapthi B, Ma LQ (2017) Arsenic transport in rice and biological solution to reduce arsenic risk from rice. Front Plant Sci 8(268):1–11Google Scholar
  21. Cheng C-N, Focht DD (1979) Production of arsine and methylarsines in soil and in culture. Appl Environ Microbiol 38:494–498PubMedPubMedCentralGoogle Scholar
  22. Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662PubMedCrossRefPubMedCentralGoogle Scholar
  23. de Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC, Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol 104:255–261PubMedPubMedCentralCrossRefGoogle Scholar
  24. Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1993) Transfer of arsenite from glutathione to dithiols: a model of interaction. Chem Res Toxicol 6:598–602PubMedCrossRefPubMedCentralGoogle Scholar
  25. Duncan EG, Maher WA, Jagtap R, Krikowa F, Roper MM, O’Sulivan CA (2017) Selenium speciation in wheat grain varies in the presence of nitrogen and Sulphur fertilisers. Environ Geochem Health 39:955–966PubMedCrossRefPubMedCentralGoogle Scholar
  26. Feldmann J, Raab A, Krupp EM (2017) Importance of ICPMS for speciation analysis is changing: future trends for targeted and non-targeted element speciation analysis. Anal Bioanal Chem.
  27. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Frontiers in physiology. Plant Physiol 3:182.1–18Google Scholar
  28. Fitz WJ, Wenzel WW (2002) Arsenic transformation in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278PubMedCrossRefPubMedCentralGoogle Scholar
  29. Forsgard N, Nilsson E, Andersson M, Pettersson J (2006) Investigation of matrix effects in boron determination using organic solvents as modifiers for liquid chromatography coupled to ICP-MS. J Anal At Spectrom 21:305–310CrossRefGoogle Scholar
  30. Fu LH, Wang XF, Eyal Y, She YM, Donald LJ, Standing KG, Ben-Hayyim G (2002) A selenoprotein in the plant kingdom. J Biol Chem 277:25983–25991PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gajdosechova Z, Lawan MM, Urgast DS, Raab A, Scheckel KG, Lombi E, Kopittke PM, Loeschner K, Larsen EH, Woods G, Brownlow A, Read FL, Feldmann J, Krupp EM (2016) In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci Rep 6:34361. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Geiszinger A, Goessler W, Kosmus W (2002) Organoarsenic compounds in plants and soil on top an ore vein. Appl Organomet Chem 16:245–249CrossRefGoogle Scholar
  33. Gonzaga MI, Santos JAG, Ma LQ (2006) Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environ Pollut 143:254–260CrossRefGoogle Scholar
  34. Gray AL (1989) Inductively coupled plasma mass spectrometry, Edited by Date AR, Gray AL. Blackie and Son Ltd., Bishopbriggs, Glasgow, pp 1–42Google Scholar
  35. Griffin K (2015) Sex, lies and arsenic: how the ‘king of poisons’ lost its crown. Accessed Aug 2017
  36. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57(1):303–333PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hansen R, Roth D, Winther JR (2009) Quantifying the global cellular thiol-disulfide status. Proc Natl Acad Sci U S A 106:422–427PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hill SJ, Fisher A, Liezers M (2005) ICP mass spectrometry handbook. Blackwell Publishing Ltd., Oxford, UK, pp 1–25Google Scholar
  39. Hirai MY, Saito K (2008) Analysis of systemic sulfur metabolism in plants using integrated “-omics” strategies. Mol BioSyst 4(10):967–973PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ichikawa M, Ide N, Yoshida J, Yamaguchi H, Ono K (2006) Determination of seven organosulfur compounds in garlic by high-performance liquid chromatography. J Agric Food Chem 54(5):1535–1540PubMedCrossRefGoogle Scholar
  41. Indriolo E, Na GN, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating Fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057PubMedPubMedCentralCrossRefGoogle Scholar
  42. Jansen H, Müller B, Knobloch K (1989) Characterization of an alliin lyase preparation from garlic (Allium sativum). Planta Med 55(5):434–439PubMedCrossRefGoogle Scholar
  43. Jia Y, Huang H, Sun G-X, Zhao F-J, Zhu Y-G (2012) Pathways and relative contributions to arsenic volatilization from rice plants and paddy soils. Environ Sci Technol 46:8090–8096PubMedCrossRefGoogle Scholar
  44. Johannig J, Strasdeit H (1998) A coordination-chemical basis for the biological function of the phytochelatins. Angew Chem Int Ed 37:2464–2466CrossRefGoogle Scholar
  45. Jokic A, Cutler JN, Ponomarenko E, van der Kamp G, Anderson DW (2003) Organic carbon and sulphur compounds in wetland soils: insights on structure and transformation processes using K-edge XANES and NMR spectroscopy. Geochim Cosmochim Acta 67(14):2585–2597CrossRefGoogle Scholar
  46. Jones IF (2000) Arsenic and the Bradford poisonings of 1858. Pharm J 265:938–939Google Scholar
  47. Kesselring J (1939) “Arsenic and old lace” stage play, Fulton Theatre, BroadwayGoogle Scholar
  48. Kopriva S, Calderwood A, Weckopp SC, Koprivova A (2015) Plant sulfur and big data. Plant Sci 241:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  49. Krupp EM, Milne BF, Mestrot A, Meharg AA, Feldmann J (2008) Investigation into mercury bound to biothiols: structural identification using ESI–ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS. Anal Bioanal Chem 390:1753–1764PubMedPubMedCentralCrossRefGoogle Scholar
  50. Krupp EM, Mestrot A, Wielgus J, Meharg AA, Feldmann J (2009) The molecular form of mercury in biota: identification of novel mercury peptide complexes in plants. Chem Commun 28:4257–4259CrossRefGoogle Scholar
  51. Le XC, Ma M, Lu X, Cullen WR, Aposhian HV, Zheng B (2000) Determination of monomethylarsonous acid, a key arsenic methylation intermediate, in human urine. Environ Health Perspect 108:1015–1018PubMedPubMedCentralCrossRefGoogle Scholar
  52. Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120(3):637–644PubMedPubMedCentralCrossRefGoogle Scholar
  53. Lewandowska M, Sirko A (2008) Recent advances in understanding plant response to sulfur-deficiency stress. Acta Biochim Pol 55(3):457–471PubMedGoogle Scholar
  54. Li HF, McGrath SP, Zhao FJ (2008) Arsenic uptake and metabolism in plants. New Phytol 178:92–102PubMedCrossRefGoogle Scholar
  55. Li Y, Zhao J, Guo J, Liu M, Xu Q, Li H, Li YF, Zheng L, Zhang Z, Gao Y (2017) Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils. Chemosphere 182:293–300PubMedCrossRefGoogle Scholar
  56. Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do phosphorous nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytol 162:481–488CrossRefGoogle Scholar
  57. Liu W-J, Wood BA, Raab A, McGrath SP, Zhao F-J, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces Arsenite efflux and translocation from roots to shoots in arabidopsis. Plant Physiol 152:2211–2221PubMedPubMedCentralCrossRefGoogle Scholar
  58. Liu X, Zhao Z, Duan B, Hu C, Zhao X, Guo Z (2014) Effect of applied sulphur on the uptake by wheat of selenium applied as selenite. Plant Soil 386(1–2):35–45Google Scholar
  59. Liu X, Yang Y, Deng X, Li M, Zhang W, Zhao Z (2017a) Effects of sulfur and sulfate on selenium uptake and quality of seeds in rapeseed (Brassica napus L.) treated with selenite and selenate. Environ Exp Bot 135:13–20CrossRefGoogle Scholar
  60. Liu X, J-W F, Da Silva E, Shi X-X, Cao Y, Rathinasabapthi B, Chen Y, Ma LQ (2017b) Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Environ Pollut 223:230–237PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lomax C, Liu W-J, Wu L, Xue K, Hiong J, Zhou J, McGrath SP, Meharg AA, Miller AJ, Zhao F-J (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lombi E, Zhao F-J, Fuhrmann M, Ma QL, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203CrossRefGoogle Scholar
  63. Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12(3):250–258PubMedCrossRefPubMedCentralGoogle Scholar
  64. MacGowan D (2007) The strange affair of Madeleine Smith. In: Victorian Scotland’s trial of the century. Mercat Press, Edinburgh. ISBN 978-1-8183-113-8Google Scholar
  65. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235PubMedCrossRefGoogle Scholar
  66. Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419CrossRefGoogle Scholar
  67. May TW, Wiedmeyer RH (1998) A table of polyatomic interferences in ICP-MS. At Spectrosc 19:150–155Google Scholar
  68. McCarty KM, Hanh HT, Kim K-W (2011) Arsenic geochemistry and human health in South East Asia. Rev Environ Health 26:71–78PubMedPubMedCentralCrossRefGoogle Scholar
  69. Meagher BR (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–152PubMedCrossRefPubMedCentralGoogle Scholar
  70. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43CrossRefGoogle Scholar
  71. Meharg AA, Rahman M (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 42:1051–1057CrossRefGoogle Scholar
  72. Mestrot A, Planer-Friedrich B, Feldmann J (2013) Biovolatilisation: a poorly studies pathway of the arsenic biogeochemical cycle. Environ Sci: Processes Impacts 15:1635–1651Google Scholar
  73. Mishra S, Mattusch J, Wennrich R (2017) Accumulation and transformation of inorganic and organic arsenic in rice and role of thiol-complexation to restrict their translocation to shoot. Sci Rep 7:40522PubMedPubMedCentralCrossRefGoogle Scholar
  74. Obrist D, Agnan Y, Jiskra M, Olson LC, Colegrove DP, Hueber J, Moore CW, Sonke JE, Helmig D (2017) Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547:201–204. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Ohno K, Yanase T, Matsuo Y, Kimura T, Rahman MH, Magara Y, Matsui Y (2007) Arsenic intake via water and food by a population living in an arsenic-affected area of Bangladesh. Sci Total Environ 381:68–76PubMedCrossRefPubMedCentralGoogle Scholar
  76. Pavageau MP, Pecheyran C, Krupp EM, Morin A, Donard OFX (2002) Volatile metal species in coal combustion flue gas. Environ Sci Techol 36:1561–1573CrossRefGoogle Scholar
  77. Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16:1247–1253CrossRefGoogle Scholar
  78. Pilon-Smits EAH, Hwang S, Lyle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132PubMedPubMedCentralCrossRefGoogle Scholar
  79. Prestera T, Fahey JW, Holtzclaw WD, Abeygunawardana C, Kachinski JL, Talalay P (1996) Comprehensive chromatographic and spectroscopic methods for the separation and identification of intact glucosinolates. Anal Biochem 239:168–179PubMedCrossRefPubMedCentralGoogle Scholar
  80. Prietzel J, Thieme J, Neuhäusler U, Susini J, Kögel-Knabner I (2003) Speciation of sulphur in soils and soil particles by X-ray spectromicroscopy. Eur J Soil Sci 54(2):423–433CrossRefGoogle Scholar
  81. Prietzel J, Thieme J, Tyufekchieva N, Paterson D, McNulty I, Kögel-Knabner I (2009) Sulfur speciation in well-aerated and wetland soils in a forested catchment assessed by sulfur K-edge X-ray absorption near-edge spectroscopy (XANES). J Plant Nutr Soil Sci 172(3):393–403CrossRefGoogle Scholar
  82. Quaghebeur M, Rengel Z (2005) Arsenic speciation governs arsenic uptake and transport in terrestrial plants. Microchim Acta 151:141–152CrossRefGoogle Scholar
  83. Raab A, Feldman J, Meharg AA (2004) The nature of arsenic-phytochelatin complexes in Holcus lanatus and Pteris cretica. Plant Physiol 134:1113–1122PubMedPubMedCentralCrossRefGoogle Scholar
  84. Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558PubMedCrossRefPubMedCentralGoogle Scholar
  85. Raab A, Wright SH, Jaspars M, Meharg AA, Feldmann J (2007a) Pentavalent arsenic can bind to biomolecules. Angew Chem Int Ed 46:2594–2597CrossRefGoogle Scholar
  86. Raab A, Ferreira K, Meharg AA, Feldmann J (2007b) Can arsenic–phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus? J Exp Bot 58:1333–1338PubMedCrossRefPubMedCentralGoogle Scholar
  87. Raab A, Williams PN, Meharg A, Feldmann J (2007c) Uptake and translocation of inorganic and methylated arsenic species in plants. Environ Chem 4:197–203CrossRefGoogle Scholar
  88. Raab A, Ronzan M, Feldmann J (2017) Sulphur fertilization influences the sulphur species composition in Allium sativum: sulphomics using HPLC-ICPMS/MS-ESI-MS/MS. Metallomics.
  89. Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86PubMedCrossRefPubMedCentralGoogle Scholar
  90. Riddles PW, Blakeley RL, Zerner B (1983) Reassessment of Ellman’s reagent. Methods Enzymol 91:49–60PubMedCrossRefPubMedCentralGoogle Scholar
  91. Rothenberg SE, Windham-Myers L, Creswell JE (2014) Rice methylmercury exposure and mitigation: a comprehensive review. Environ Res 133:407–423PubMedCrossRefPubMedCentralGoogle Scholar
  92. Sabeh F, Wright T, Norton SJ (1993) Purification and characterization of a glutathione peroxidase from Aloe vera plant. Enzyme Protoc 47:92–98CrossRefGoogle Scholar
  93. Scherer HW (2009) Sulfur in soils. J Plant Nutr Soil Sci 172(3):326–335CrossRefGoogle Scholar
  94. Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 70:3292–3293CrossRefGoogle Scholar
  95. Scotsman (2005) Madeleine Smith and her poisonous tale. Last accessed Aug 2017
  96. Scott N, Hatlelid KM, MacKenzie NE, Carter DE (1993) Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol 6:102–106PubMedCrossRefPubMedCentralGoogle Scholar
  97. Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sneller FEC, van Heerwarden LM, Kraaijeveld-Smit FJL, Ten Bookum WM, Koevoets PLM, Schat H, Verkleij JAC (1999) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 144:223–232CrossRefGoogle Scholar
  99. Solomon D, Lehmann J, Martínez CE (2003) Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur dynamics in soil organic matter. Soil Sci Soc Am J 67:1721–1731CrossRefGoogle Scholar
  100. Solomon D, Lehmann J, Kinyangi J, Pell A, Theis J, Riha S, Ngoze S, Amelung W, Preez C, Machado S, Ellert B, Janzen H (2009) Anthropogenic and climate influences on biogeochemical dynamics and molecular-level speciation of soil sulfur. Ecol Appl 19(4):989–1002PubMedCrossRefPubMedCentralGoogle Scholar
  101. Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shima D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci U S A 107:21187–21192PubMedPubMedCentralCrossRefGoogle Scholar
  102. Song ZP, Shao HF, Huang HG, Shen Y, Wang LZ, Wu FY, Han D, Song JY, Jia HF (2017) Environ Exp Bot 137:158–165CrossRefGoogle Scholar
  103. Spuches AM, Kruszyna HG, Rich AM, Wilcox DE (2005) Thermodynamics of the as(III)−thiol interaction: arsenite and monomethylarsenite complexes with glutathione, dihydrolipoic acid, and other thiol ligands. Inorg Chem 44:2964–2972PubMedCrossRefPubMedCentralGoogle Scholar
  104. Srivastava S, D’Souza SF (2009) Increasing sulfur supply enhances tolerance to arsenic and its accumulation in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 43(16):6308–6313PubMedCrossRefPubMedCentralGoogle Scholar
  105. Srivastava S, D’Souza SF (2010) Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (L.f.) Royle. Ecotoxicol Environ Saf 73(6):1314–1322PubMedCrossRefPubMedCentralGoogle Scholar
  106. Steffens JC (1990) The heavy metal-binding peptides of plants. Ann Rev Plant Physiol Plant Mol Biol 41:553–575CrossRefGoogle Scholar
  107. Strickman RJ, Mitchell CPJ (2017) Accumulation and translocation of methylmercury and inorganic mercury in Oryza sativa: an enriched isotope tracer study. Sci Total Environ Ann 574:1415–1423CrossRefGoogle Scholar
  108. Swain EB (2007) Socioeconomic consequences of mercury use and pollution. Ambio 36(1):45–61PubMedCrossRefPubMedCentralGoogle Scholar
  109. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62(1):157–184PubMedCrossRefPubMedCentralGoogle Scholar
  110. Thomas X, Troncy J (2009) Arsenic: a beneficial therapeutic poison - a historical overview. Adler Museums Bull 35:3–13Google Scholar
  111. Tian M, Hui M, Thannhauser TW, Pan S, Li L (2017) Selenium-induced toxicity is counteracted by sulfur in broccoli (Brassica oleracea L. var. italica). Front Plant Sci 8:1425PubMedPubMedCentralCrossRefGoogle Scholar
  112. Venkatachalam P, Srivastava AK, Raghothama KG, Sahi SV (2009) Genes induced in response to mercury-ion-exposure in heavy metal hyperaccumulator Sesbania drummondii. Environ Sci Technol 43:843–850PubMedCrossRefPubMedCentralGoogle Scholar
  113. Wallschlaeger D, Feldmann J (2010) Formation, occurrence, significance and analysis of organoselenium and organotellurium compounds in the environment. In: Sigel H, Sigel A (eds) Organometallics in environment and toxicology. Wiley, Hoboken, pp 319–364CrossRefGoogle Scholar
  114. Watanabe T, Kouho R, Katayose T, Kitajima N, Sakamoto N, Yamaguchi N, Shinano T, Yurimoto H, Osaki M (2014) Arsenic alters uptake and distribution of sulphur in Pteris vittata. Plant Cell Environ 37(1):45–53PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wood BA, Feldmann J (2012) Quantification of phytochelatins and their metal(loid) complexes: critical assessment of current analytical methodology. Anal Bioanal Chem 402:3299–3309PubMedCrossRefPubMedCentralGoogle Scholar
  116. Wood BA, Miyashita S, Kaise T, Raab A, Meharg AA, Feldmann J (2011) Arsenic is not stored as arsenite–phytochelatin complexes in the seaweeds Fucus spiralis and Hizikia fusiforme. Environ Chem 8:30–43CrossRefGoogle Scholar
  117. Xu X, Zhao J, Li Y, Fan Y, Zhu N, Gao Y, Li B, Liu H, Li YF (2016) Demethylation of methylmercury in growing rice plants: an evidence of self-detoxification. Environ Pollut 210:113–120PubMedCrossRefPubMedCentralGoogle Scholar
  118. Xu X, Meng B, Zhang C, Feng X, Gu C, Guo J, Bishop K, Xu Z, Zhang S (2017a) Qiu G (2017): the local impact of a coal-fired power plant on inorganic mercury and methyl-mercury distribution in rice. Environ Pollut 223:11–18PubMedCrossRefPubMedCentralGoogle Scholar
  119. Xu X, McGrath SP, Zhao F-J (2017b) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:5574–5579Google Scholar
  120. Yamazaki Y, Iwasaki K, Mikami M, Yagihashi A (2010) Distribution of eleven flavor precursors, S-alk(en)yl-L-cysteine derivatives, in seven Allium vegetables. Food Sci Technol Res 17(1):55–62CrossRefGoogle Scholar
  121. Yang X, Lu Y, Zhong J, Qian Y, Zhao Z, Liu X (2017) The positive effect of sulfur on selenium detoxification under selenite condition in wheat. Commun Soil Sci Plant Anal 48(13):1564–1573CrossRefGoogle Scholar
  122. Ye W-l, Wood BA, Stroud JL, Andralojc J, Raab A, McGrath SP, Feldmann J, Zhao F-J (2010) Arsenic speciation in phloem and xylem exudates of castor bean. Plant Physiol 154:1505–1513PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhang H, Xu W, Guo J, Zhenyan H, Ma M (2005) Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Sci 169:1059–1065CrossRefGoogle Scholar
  124. Zhang LH, Hu B, Li W, Ce RH, Deng K, Li H, Yu FY, Ling HQ, Li YJ, Chu CC (2014) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201:1183–1191PubMedCrossRefPubMedCentralGoogle Scholar
  125. Zhao F-J, Ma JF, Meharg A, McGrath SP (2008) Arsenic uptake and metabolism in plants. New Phytol 181:777–794CrossRefGoogle Scholar
  126. Zhao F-J, McCrath SP, Meharg AA (2010a) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism ad mitigation strategies. Ann Rev Plant Biol 61:535–559CrossRefGoogle Scholar
  127. Zhao F-J, Ago Y, Mitani N, Li R-Y, Su Y-H, Yamaji N, McGrath SP (2010b) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399PubMedCrossRefPubMedCentralGoogle Scholar
  128. Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA (2008) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jörg Feldmann
    • 1
  • Katharina Bluemlein
    • 2
  • Eva Maria Krupp
    • 1
    Email author
  • Martin Mueller
    • 1
  • Barry Alan Wood
    • 3
  1. 1.TESLA (Trace Element Speciation Laboratory), Department of ChemistryUniversity of AberdeenScotlandUK
  2. 2.Fraunhofer Institute for Toxicology and Experimental MedicineHannoverGermany
  3. 3.Reading Scientific Services Ltd, The Reading Science CentreReadingUK

Personalised recommendations