Plant-Produced Avian Influenza Antigens

  • Yanaysi CeballoEmail author
  • Alina Lopez
  • Kenia Tiel
  • Abel Hernandez


Avian influenza (AI) is a highly contagious respiratory disease that can also affect the enteric and nervous systems, causing a high degree of morbidity and mortality in animals and even in humans. Although current vaccines are effective against virus infection, new strategies need to be developed to satisfy the global demand for an AI vaccine. Plant-based expression systems can function as inexpensive platforms for the large scale production of recombinant pharmaceuticals or subunit vaccines. During the last decade, successful cases of influenza antigens production have been reported in plants, using both transient and stable expression systems. Full-length hemagglutinin (HA), as well as subunits thereof, has been produced in different compartments of the cell fused or not to other polypeptides. Immunizations of animals (mice, ferrets, rabbit, chickens and human) were performed with some of these plant-derived HA variants. These results demonstrate that plant-produced HA protein is antigenic and can induce immune response that correlate with protection against lethal AI virus. This paper reviews studies developed by several groups of researchers to improve the production of plant-based AI vaccines.


Avian Influenza Plant molecular farming Hemagglutinin Veterinary vaccines 


  1. Acha PN, Szyfres B (2003) Zoonoses and communicable diseases common to man and animals: parasitic zoonoses: Pan American Health OrgGoogle Scholar
  2. Arcalis E, Ibl V, Peters J, Melnik S, Stoger E (2015) The dynamic behavior of storage organelles in developing cereal seeds and its impact on the production of recombinant proteins. Adv Seed Biol 118Google Scholar
  3. Azhakanandam K, Weissinger SM, Nicholson JS, Qu R, Weissinger AK (2007) Amplicon-plus targeting technology (APTT) for rapid production of a highly unstable vaccine protein in tobacco plants. Plant Mol Biol 63(3):393–404CrossRefPubMedGoogle Scholar
  4. Barbazan P, Thitithanyanont A, Misse D, Dubot A, Bosc P, Luangsri N et al (2008) Detection of H5N1 avian influenza virus from mosquitoes collected in an infected poultry farm in Thailand. Vector-Borne Zoonotic Dis 8(1):105–110CrossRefPubMedGoogle Scholar
  5. Ben Embarek P, Briand S, Brown I, Bruscke C, Domenech J, Formenty P et al (2009) FAO-OIE-WHO joint technical consultation on avian influenza at the human-animal interface. Influenza Other Respir Viruses 4:1–29Google Scholar
  6. Buyel JF (2015) Process development strategies in plant molecular farming. Curr Pharm Biotechnol 16(11):966–982CrossRefPubMedGoogle Scholar
  7. Ceballo Y, Tiel K, López A, Cabrera G, Pérez M, Ramos O et al (2017) High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza. Transgenic Res 26(6):775–789CrossRefPubMedGoogle Scholar
  8. Chan HT, Daniell H (2015) Plant-made oral vaccines against human infectious diseases-are we there yet? Plant Biotechnol J 13(8):1056–1070CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chichester JA, Jones RM, Green BJ, Stow M, Miao F, Moonsammy G et al (2012) Safety and immunogenicity of a plant-produced recombinant hemagglutinin-based influenza vaccine (HAI-05) derived from A/Indonesia/05/2005 (H5N1) influenza virus: a phase 1 randomized, double-blind, placebo-controlled, dose-escalation study in healthy adults. Viruses 4(11):3227–3244CrossRefPubMedPubMedCentralGoogle Scholar
  10. Clarke JL, Daniell H, Nugent JM (2011) Chloroplast biotechnology, genomics and evolution: current status, challenges and future directions. Plant Mol Biol 76(3):207–209CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cummings JF, Guerrero ML, Moon JE, Waterman P, Nielsen RK, Jefferson S et al (2014) Safety and immunogenicity of a plant-produced recombinant monomer hemagglutinin-based influenza vaccine derived from influenza A (H1N1) pdm09 virus: a Phase 1 dose-escalation study in healthy adults. Vaccine 32(19):2251–2259CrossRefPubMedGoogle Scholar
  12. D’Aoust MA, Lavoie PO, Couture MMJ, Trépanier S, Guay JM, Dargis M et al (2008) Influenza virus-like particles produced by transient expression in Nicotiana benthamiana induce a protective immune response against a lethal viral challenge in mice. Plant Biotechnol J 6(9):930–940CrossRefPubMedGoogle Scholar
  13. D’Aoust MA, Couture MM, Charland N, Trepanier S, Landry N, Ors F et al (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J 8(5):607–619CrossRefPubMedGoogle Scholar
  14. De Jaeger G, Scheffer S, Jacobs A, Zambre M, Zobell O, Goossens A et al (2002) Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat Biotechnol 20(12):1265–1268CrossRefPubMedGoogle Scholar
  15. De Wilde K, De Buck S, Vanneste K, Depicker A (2013) Recombinant antibody production in Arabidopsis seeds triggers an unfolded protein response. Plant Physiol 161(2):1021–1033CrossRefPubMedGoogle Scholar
  16. Du Y, Lou B, Wu Z, Zhao P, Cui Z (2012) Influence of antibody-mediated immune pressure on neuraminidase gene mutations of avian influenza virus H9N2. Bing du xue bao = Chin J Virol 28(1):1–6Google Scholar
  17. Fahad S, Khan FA, Pandupuspitasari NS, Ahmed MM, Liao YC, Waheed MT et al (2015) Recent developments in therapeutic protein expression technologies in plants. Biotechnol Lett 37(2):265–279CrossRefPubMedGoogle Scholar
  18. FAO U (2016) Rational use of vaccination for prevention and control of H5 highly pathogenic avian influenzaGoogle Scholar
  19. Farsad A, Malekzadeh-Shafaroudi S, Moshtaghi N, Fotouhi F, Zibaee S (2017) Transient Expression of HA1 Antigen of H5N1 Influenza Virus in Tobacco (Nicotiana tabacum L.) via Agro-infiltration. J Agric Sci Technol 19(2):439–451Google Scholar
  20. Ferguson NM, Cummings DA, Fraser C, Cajka JC, Cooley PC, Burke DS (2006) Strategies for mitigating an influenza pandemic. Nature 442(7101):448–452CrossRefPubMedGoogle Scholar
  21. Firsov A, Tarasenko I, Mitiouchkina T, Ismailova N, Shaloiko L, Vainstein A et al (2015) High-yield expression of M2e peptide of avian influenza virus H5N1 in transgenic duckweed plants. Mol Biotechnol 57(7):653–661CrossRefPubMedGoogle Scholar
  22. Floyd DL, Ragains JR, Skehel JJ, Harrison SC, van Oijen AM (2008) Single-particle kinetics of influenza virus membrane fusion. Proc National Acad Sci 105(40):15382–15387CrossRefGoogle Scholar
  23. Fujiuchi N, Matoba N, Matsuda R (2016) Environment control to improve recombinant protein yields in plants based on agrobacterium-mediated transient gene expression. Front Bioeng Biotechnol 4:23CrossRefPubMedPubMedCentralGoogle Scholar
  24. Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant–pathogen interactions. Mol Plant-Microbe Interact 21(8):1015–1026CrossRefPubMedGoogle Scholar
  25. Hannoun C, Megas F, Piercy J (2004) Immunogenicity and protective efficacy of influenza vaccination. Virus Res 103(1):133–138CrossRefPubMedGoogle Scholar
  26. Harfoot R, Webby RJ (2017) H5 influenza, a global update. J Microbiol 55(3):196–203CrossRefPubMedGoogle Scholar
  27. Hernández A, López A, Ceballo Y, Rosabal L, Rosabal Y, Tiel K et al (2013) High-level production and aggregation of hepatitis B surface antigen in transgenic tobacco seeds. Biotecnol Apl 30:97–100Google Scholar
  28. Hernández-Velázquez A, López-Quesada A, Ceballo-Cámara Y, Cabrera-Herrera G, Tiel-González K, Mirabal-Ortega L et al (2015) Tobacco seeds as efficient production platform for a biologically active anti-HBsAg monoclonal antibody. Transgenic Res 24(5):897–909CrossRefPubMedGoogle Scholar
  29. Hickling J, D’Hondt E (2006) A review of production technologies for influenza virus vaccines, and their suitability for deployment in developing countries for influenza pandemic preparedness. World Health Organization Initiative for Vaccine Research 1–34Google Scholar
  30. Hofbauer A, Melnik S, Tschofen M, Arcalis E, Phan HT, Gresch U et al (2016) The encapsulation of hemagglutinin in protein bodies achieves a stronger immune response in mice than the soluble antigen. Front Plant Sci 7:142CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hu CJ, Chien CY, Liu MT, Fang ZS, Chang SY, Juang RH et al (2017) Multi-antigen avian influenza a (H7N9) virus-like particles: particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol 17(1):2CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hudson LC, Garg R, Bost KL, Piller KJ (2014) Soybean seeds: a practical host for the production of functional subunit vaccines. Biomed Res Int 2014:340804CrossRefPubMedPubMedCentralGoogle Scholar
  33. Iowa State University Center for Food Security and Public Health, “Avian Influenza” (2016) Center for Food Security and Public Health. Technical Factsheets. 10.
  34. Iyer V, Liyanage MR, Shoji Y, Chichester JA, Jones RM, Yusibov V et al (2012) Formulation development of a plant-derived h1n1 influenza vaccine containing purified recombinant hemagglutinin antigen. Human Vaccines Immunotherapeutics 8(4):453–464CrossRefPubMedGoogle Scholar
  35. Joseph T, McAuliffe J, Lu B, Vogel L, Swayne D, Jin H et al (2008) A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets. Virology 378(1):123–132CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jul-Larsen Å, Madhun AS, Brokstad KA, Montomoli E, Yusibov V, Cox RJ (2012) The human potential of a recombinant pandemic influenza vaccine produced in tobacco plants. Human Vaccines immunotherapeutics 8(5):653–661CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kalthoff D, Giritch A, Geisler K, Bettmann U, Klimyuk V, Hehnen H-R et al (2010a) Immunization with plant-expressed hemagglutinin protects chickens from lethal highly pathogenic avian influenza virus H5N1 challenge infection. J Virol 84(22):12002–12010CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kalthoff D, Globig A, Beer M (2010b) (Highly pathogenic) avian influenza as a zoonotic agent. Vet Microbiol 140(3):237–245CrossRefPubMedGoogle Scholar
  39. Kanagarajan S, Tolf C, Lundgren A, Waldenstrom J, Brodelius PE (2012) Transient expression of hemagglutinin antigen from low pathogenic avian influenza A (H7N7) in Nicotiana benthamiana. PLoS ONE 7(3):e33010CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kolpe A, Schepens B, Fiers W, Saelens X (2017) M2-based influenza vaccines: recent advances and clinical potential. Expert Rev Vaccines 16(2):123–136CrossRefPubMedGoogle Scholar
  41. Landry N, Ward BJ, Trepanier S, Montomoli E, Dargis M, Lapini G et al (2010) Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS ONE 5(12):e15559CrossRefPubMedPubMedCentralGoogle Scholar
  42. Landry N, Pillet S, Favre D, Poulin J-F, Trépanier S, Yassine-Diab B et al (2014) Influenza virus-like particle vaccines made in Nicotiana benthamiana elicit durable, poly-functional and cross-reactive T cell responses to influenza HA antigens. Clin Immunol 154(2):164–177CrossRefPubMedGoogle Scholar
  43. Le Mauff F, Mercier G, Chan P, Burel C, Vaudry D, Bardor M et al (2015) Biochemical composition of haemagglutinin-based influenza virus-like particle vaccine produced by transient expression in tobacco plants. Plant Biotechnol J 13(5):717–725CrossRefPubMedGoogle Scholar
  44. Lee G, Na YJ, Yang BG, Choi JP, Seo YB, Hong CP et al (2015) Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection. Plant Biotechnol J 13(1):62–72CrossRefPubMedGoogle Scholar
  45. Ling H-Y, Edwards AM, Gantier MP, DeBoer KD, Neale AD, Hamill JD et al (2012) An interspecific Nicotiana hybrid as a useful and cost-effective platform for production of animal vaccines. PLoS ONE 7(4):e35688CrossRefPubMedPubMedCentralGoogle Scholar
  46. Major D, Chichester JA, Pathirana RD, Guilfoyle K, Shoji Y, Guzman CA et al (2015) Intranasal vaccination with a plant-derived H5 HA vaccine protects mice and ferrets against highly pathogenic avian influenza virus challenge. Hum Vaccin Immunother 11(5):1235–1243PubMedPubMedCentralGoogle Scholar
  47. Mao H, Liu Y, Sia SF, Peiris JM, Lau Y-L, Tu W (2017) Avian influenza virus directly infects human natural killer cells and inhibits cell activity. Virologica Sinica 1–8Google Scholar
  48. Marangon S, Capua I (eds) (2005) Control of AI in Italy: from “Stamping-out”-strategy to emergency and prophylactic vaccination. Proc Internat Conf on Avian Influenza, ParisGoogle Scholar
  49. Mardanova ES, Kotlyarov RY, Kuprianov VV, Stepanova LA, Tsybalova LM, Lomonosoff GP et al (2015) Rapid high-yield expression of a candidate influenza vaccine based on the ectodomain of M2 protein linked to flagellin in plants using viral vectors. BMC Biotechnol 15(1):42CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mardanova ES, Blokhina EA, Tsybalova LM, Peyret H, Lomonossoff GP, Ravin NV (2017) Efficient transient expression of recombinant proteins in plants by the novel pEff vector based on the genome of potato virus X. Front Plant Sci 8:247CrossRefPubMedPubMedCentralGoogle Scholar
  51. Marsian J, Lomonossoff GP (2016) Molecular pharming—VLPs made in plants. Curr Opin Biotechnol 37:201–206CrossRefPubMedGoogle Scholar
  52. Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk H-D (2004) Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol 78(22):12665–12667CrossRefPubMedPubMedCentralGoogle Scholar
  53. Medina RA, García-Sastre A (2011) Influenza A viruses: new research developments. Nat Rev Microbiol 9(8):590–603CrossRefPubMedGoogle Scholar
  54. Mett V, Musiychuk K, Bi H, Farrance CE, Horsey A, Ugulava N (2008) A plant-produced influenza subunit vaccine protects ferrets against virus challenge. Viruses 2Google Scholar
  55. Mortimer E, Maclean JM, Mbewana S, Buys A, Williamson A-L, Hitzeroth II et al (2012) Setting up a platform for plant-based influenza virus vaccine production in South Africa. BMC Biotechnol 12(1):14CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nahampun HN, Bosworth B, Cunnick J, Mogler M, Wang K (2015) Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. Plant Cell Rep 34(6):969–980CrossRefPubMedGoogle Scholar
  57. Nemchinov LG, Natilla A (2007) Transient expression of the ectodomain of matrix protein 2 (M2e) of avian influenza A virus in plants. Protein Expr Purif 56(2):153–159CrossRefPubMedGoogle Scholar
  58. Neuhaus V, Chichester JA, Ebensen T, Schwarz K, Hartman CE, Shoji Y et al (2014) A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung. Vaccine 32(26):3216–3222CrossRefPubMedGoogle Scholar
  59. Nidom CA, Takano R, Yamada S, Sakai-Tagawa Y, Daulay S, Aswadi D et al (2010) Influenza A (H5N1) viruses from pigs, Indonesia. Emerg Infect Dis 16(10):1515CrossRefPubMedPubMedCentralGoogle Scholar
  60. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus AD, Fouchier RA (2006) Global patterns of influenza A virus in wild birds. Science 312(5772):384–388CrossRefPubMedGoogle Scholar
  61. Peyret H, Lomonossoff GP (2015) When plant virology met Agrobacterium: the rise of the deconstructed clones. Plant Biotechnol J 13(8):1121–1135CrossRefPubMedPubMedCentralGoogle Scholar
  62. Phan HT, Pohl J, Floss DM, Rabenstein F, Veits J, Le BT et al (2013) ELPylated haemagglutinins produced in tobacco plants induce potentially neutralizing antibodies against H5N1 viruses in mice. Plant Biotechnol J 11(5):582–593CrossRefPubMedGoogle Scholar
  63. Phan HT, Hause B, Hause G, Arcalis E, Stoger E, Maresch D et al (2014) Influence of elastin-like polypeptide and hydrophobin on recombinant hemagglutinin accumulations in transgenic tobacco plants. PLoS ONE 9(6):e99347CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pietrzak M, Macioła A, Zdanowski K, Protas-Klukowska AM, Olszewska M, Śmietanka K et al (2016) An avian influenza H5N1 virus vaccine candidate based on the extracellular domain produced in yeast system as subviral particles protects chickens from lethal challenge. Antiviral Res 133:242–249CrossRefPubMedGoogle Scholar
  65. Pillet S, Racine T, Nfon C, Di Lenardo TZ, Babiuk S, Ward BJ et al (2015) Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine. 33(46):6282–6289CrossRefPubMedGoogle Scholar
  66. Pillet S, Aubin E, Trepanier S, Bussiere D, Dargis M, Poulin JF et al (2016) A plant-derived quadrivalent virus like particle influenza vaccine induces cross-reactive antibody and T cell response in healthy adults. Clin Immunol 168:72–87CrossRefPubMedGoogle Scholar
  67. Pose AG, Gomez JN, Sanchez AV, Redondo AV, Rodriguez ER, Segui RM et al (2011) Subunit influenza vaccine candidate based on CD154 fused to HAH5 increases the antibody titers and cellular immune response in chickens. Vet Microbiol 152(3–4):328–337CrossRefPubMedGoogle Scholar
  68. Pua T-L, Chan XY, Loh H-S, Omar AR, Yusibov V, Musiychuk K et al (2017) Purification and immunogenicity of hemagglutinin from highly pathogenic avian influenza virus H5N1 expressed in Nicotiana benthamiana. Human Vaccines Immunotherapeutics 13:306–313CrossRefPubMedGoogle Scholar
  69. Pushko P, Tretyakova I, Hidajat R, Zsak A, Chrzastek K, Tumpey TM et al (2017) Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens. Virology 501:176–182CrossRefPubMedGoogle Scholar
  70. Ravin NV, Kotlyarov RY, Mardanova ES, Kuprianov VV, Migunov AI, Stepanova LA (2012) Plant-produced recombinant influenza vaccine based on virus-like HBc particles carrying an extracellular domain of M2 protein. Biochem (Mosc) 77(1):33–44CrossRefGoogle Scholar
  71. Redkiewicz P, Sirko A, Kamel KA, Góra-Sochacka A (2014) Plant expression systems for production of hemagglutinin as a vaccine against influenza virus. Acta Biochim Pol 61(3):551–560PubMedGoogle Scholar
  72. Rossi L, Pinotti L, Agazzi A, Dell’Orto V, Baldi A (2014) Plant bioreactors for the antigenic hook-associated flgK protein expression. Ital J Anim Sci 13(1)CrossRefGoogle Scholar
  73. Sack M, Hofbauer A, Fischer R, Stoger E (2015) The increasing value of plant-made proteins. Curr Opin Biotechnol 32:163–170CrossRefPubMedGoogle Scholar
  74. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693CrossRefPubMedGoogle Scholar
  75. Shoji Y, Chichester JA, Bi H, Musiychuk K, de la Rosa P, Goldschmidt L et al (2008) Plant-expressed HA as a seasonal influenza vaccine candidate. Vaccine 26(23):2930–2934CrossRefPubMedGoogle Scholar
  76. Shoji Y, Farrance CE, Bi H, Shamloul M, Green B, Manceva S et al (2009a) Immunogenicity of hemagglutinin from A/Bar-headed Goose/Qinghai/1A/05 and A/Anhui/1/05 strains of H5N1 influenza viruses produced in Nicotiana benthamiana plants. Vaccine 27(25–26):3467–3470CrossRefPubMedGoogle Scholar
  77. Shoji Y, Bi H, Musiychuk K, Rhee A, Horsey A, Roy G et al (2009b) Plant-derived hemagglutinin protects ferrets against challenge infection with the A/Indonesia/05/05 strain of avian influenza. Vaccine 27(7):1087–1092CrossRefPubMedGoogle Scholar
  78. Shoji Y, Chichester JA, Jones M, Manceva SD, Damon E, Mett V (2011) Plant-based rapid production of recombinant subunit hemagglutinin vaccines targeting H1N1 and H5N1 influenza. Hum Vaccines 7:41–50CrossRefGoogle Scholar
  79. Shoji Y, Jones RM, Mett V, Chichester JA, Musiychuk K, Sun X et al (2013) A plant-produced H1N1 trimeric hemagglutinin protects mice from a lethal influenza virus challenge. Human Vaccines Immunotherapeutics 9(3):553–560CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shoji Y, Prokhnevsky A, Leffet B, Vetter N, Tottey S, Satinover S et al (2015) Immunogenicity of H1N1 influenza virus-like particles produced in Nicotiana benthamiana. Hum Vaccin Immunother 11(1):118–123CrossRefPubMedGoogle Scholar
  81. Sievert K, Avarez R, Cortada R, Valks M (2006) House flies carrying avian influenza virus (AIV). Int Pest Control 48(3):114–116Google Scholar
  82. Sims L, Domenech J, Benigno C, Kahn S, Kamata A, Lubroth J et al (2005) Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet Rec 157(6):159CrossRefPubMedGoogle Scholar
  83. Spackman E (2008) A brief introduction to the avian influenza virus. Avian Influenza Virus 1–6Google Scholar
  84. Spitsin S, Andrianov V, Pogrebnyak N, Smirnov Y, Borisjuk N, Portocarrero C et al (2009) Immunological assessment of plant-derived avian flu H5/HA1 variants. Vaccine 27(9):1289–1292CrossRefPubMedGoogle Scholar
  85. Stachyra A, Pietrzak M, Maciola A, Protasiuk A, Olszewska M, Smietanka K et al (2017) A prime/boost vaccination with HA DNA and Pichia-produced HA protein elicits a strong humoral response in chickens against H5N1. Virus Res 232:41–47CrossRefPubMedGoogle Scholar
  86. Stephenson I, Wood J, Nicholson K, Zambon M (2003) Sialic acid receptor specificity on erythrocytes affects detection of antibody to avian influenza haemagglutinin. J Med Virol 70(3):391–398CrossRefPubMedGoogle Scholar
  87. Suguitan AL Jr, McAuliffe J, Mills KL, Jin H, Duke G, Lu B et al (2006) Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med 3(9):e360CrossRefPubMedPubMedCentralGoogle Scholar
  88. Topp E, Irwin R, McAllister T, Lessard M, Joensuu JJ, Kolotilin I et al (2016) The case for plant-made veterinary immunotherapeutics. Biotechnol Adv 34:597–604CrossRefPubMedGoogle Scholar
  89. Treanor JJ, Chu L, Essink B, Muse D, El Sahly HM, Izikson R et al (2017) Stable emulsion (SE) alone is an effective adjuvant for a recombinant, baculovirus-expressed H5 influenza vaccine in healthy adults: a Phase 2 trial. Vaccine 35(6):923–928CrossRefPubMedGoogle Scholar
  90. Vamvaka E, Twyman RM, Murad AM, Melnik S, Teh AYH, Arcalis E et al (2016) Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12. Plant Biotechnol J 14(1):97–108CrossRefPubMedGoogle Scholar
  91. Van Droogenbroeck B, Cao J, Stadlmann J, Altmann F, Colanesi S, Hillmer S et al (2007) Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc National Acad Sci 104(4):1430–1435CrossRefGoogle Scholar
  92. Veits J, Wiesner D, Fuchs W, Hoffmann B, Granzow H, Starick E et al (2006) Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza. Proc National Acad Sci 103(21):8197–8202CrossRefGoogle Scholar
  93. Velkers FC, Blokhuis SJ, Veldhuis Kroeze EJ, Burt SA (2017) The role of rodents in Avian Influenza outbreaks in poultry farms: a review. Vet Q 37(1):182–194CrossRefPubMedGoogle Scholar
  94. Vittecoq M, Gauduin H, Oudart T, Bertrand O, Roche B, Guillemain M et al (2017) Modeling the spread of avian influenza viruses in aquatic reservoirs: a novel hydrodynamic approach applied to the Rhône delta (southern France). Sci Total Environ 595:787–800CrossRefPubMedGoogle Scholar
  95. Wanaratana S, Panyim S, Pakpinyo S (2011) The potential of house flies to act as a vector of avian influenza subtype H5N1 under experimental conditions. Med Vet Entomol 25(1):58–63CrossRefPubMedGoogle Scholar
  96. Ward BJ, Landry N, Trépanier S, Mercier G, Dargis M, Couture M et al (2014) Human antibody response to N-glycans present on plant-made influenza virus-like particle (VLP) vaccines. Vaccine 32(46):6098–6106CrossRefPubMedGoogle Scholar
  97. Yang W-T, Yang G-L, Wang Q, Huang H-B, Jiang Y-L, Shi C-W et al (2017) Protective efficacy of Fc targeting conserved influenza virus M2e antigen expressed by Lactobacillus plantarum. Antiviral Res 138:9–21CrossRefPubMedGoogle Scholar
  98. Zheng M, Luo J, Chen Z (2014) Development of universal influenza vaccines based on influenza virus M and NP genes. Infection 42(2):251–262CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yanaysi Ceballo
    • 1
    Email author
  • Alina Lopez
    • 1
  • Kenia Tiel
    • 1
  • Abel Hernandez
    • 1
  1. 1.Plant Biotechnology DepartmentCenter for Genetic Engineering and Biotechnology (CIGB)HavanaCuba

Personalised recommendations