Vaccines Against West Nile Virus

  • Haiyan Sun
  • Qiang ChenEmail author


Despite the availability of two veterinary vaccines against West Nile virus (WNV), there remains a desperate need for a more efficient, safer, cheaper WNV vaccine that can be delivered conveniently to animals. The global threat of WNV epidemics with increasingly severe neuroinvasive infections makes this need even more urgent. To date, vaccine candidates based on inactivated, live-attenuated, or chimeric virus, and viral DNA and protein subunits have been developed. However, commercialization of a WNV veterinary vaccine may largely depend on the economics of vaccine production, as only novel low-cost production platforms would produce vaccines that outcompete the cost of clinical treatment for animals. In this chapter, we review the progress of using plants to develop effective WNV vaccines and address the economic challenges of WNV vaccine production. The status of current WNV vaccine development is summarized. The advantages of plant-based platforms for WNV vaccine production in cost, speed and scalability are briefly discussed. The progress in developing WNV subunit vaccines in plants is reviewed within the context of their expression, characterization, downstream processing, and potency in animal models. The development of WNV vaccines based on virus-like particles is also highlighted. We are confident that plants are one of the platforms that offer potent, safe and affordable veterinary vaccines against WNV.


West nile virus (WNV) Flavivirus Zika virus (ZIKV) Plant-made vaccine Virus-like particle (VLP) Plant-made biologics (PMB) Plant-made pharmaceutical (PMP) Downstream processing Oral vaccine 



The authors thank the current and past members of the Chen laboratory, especially Dr. J. He, H. Lai, J. Hurtado, M. Yang, and L. Peng for the data presented in this chapter. The contribution of numerous undergraduate students to the WNV project is also greatly appreciated. We also thank C. Jugler for the critical reading of the chapter. The research relevant to this chapter in the authors’ laboratory was supported in part by NIAID grants number U01 AI075549 and R21/R33 AI101329 to Q. Chen.


  1. Abbink P, Larocca RA, De La Barrera RA, Bricault CA, Moseley ET, Boyd M, Kirilova M, Li Z, Ng’ang’a D, Nanayakkara O, Nityanandam R, Mercado NB, Borducchi EN, Agarwal A, Brinkman AL, Cabral C, Chandrashekar A, Giglio PB, Jetton D, Jimenez J, Lee BC, Mojta S, Molloy K, Shetty M, Neubauer GH, Stephenson KE, Peron JPS, Zanotto PMDA, Misamore J, Finneyfrock B, Lewis MG, Alter G, Modjarrad K, Jarman RG, Eckels KH, Michael NL, Thomas SJ, Barouch DH (2016) Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 353(6304):1129PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aharonson-Raz K, Lichter-Peled A, Tal S, Gelman B, Cohen D, Klement E, Steinman A (2014) Spatial and temporal distribution of West Nile virus in horses in Israel (1997–2013)–from endemic to epidemics. PLoS ONE 9(11):e113149PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alonso-Padilla J, de Oya NJ, Blazquez AB, Escribano-Romero E, Escribano JM, Saiz JC (2011) Recombinant West Nile virus envelope protein E and domain III expressed in insect larvae protects mice against West Nile disease. Vaccine 29(9):1830–1835PubMedCrossRefGoogle Scholar
  4. Amanna IJ, Raue HP, Slifka MK (2012) Development of a new hydrogen peroxide-based vaccine platform. Nat Med 18(6):974–979PubMedPubMedCentralCrossRefGoogle Scholar
  5. Appaiahgari MB, Abdin MZ, Bansal KC, Vrati S (2009) Expression of Japanese encephalitis virus envelope protein in transgenic tobacco plants. J Virol Methods 162(1–2):22–29PubMedCrossRefGoogle Scholar
  6. Arroyo J, Miller C, Catalan J, Myers GA, Ratterree MS, Trent DW, Monath TP (2004) ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. J Virol 78(22):12497–12507PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barba-Spaeth G, Dejnirattisai W, Rouvinski A, Vaney M-C, Medits I, Sharma A, Simon-Lorière E, Sakuntabhai A, Cao-Lormeau V-M, Haouz A, England P, Stiasny K, Mongkolsapaya J, Heinz FX, Screaton GR, Rey FA (2016) Structural basis of potent Zika–dengue virus antibody cross-neutralization. Nature 536(7614):48–53PubMedCrossRefGoogle Scholar
  8. Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, Nachbagauer R, Foster GA, Krysztof D, Tortorella D, Stramer SL, Garcia-Sastre A, Krammer F, Lim JK (2017) Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356(6334):175–180PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke MA, Matzke AJ (1986) The expression of a nopaline synthase—human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6(5):347–357PubMedCrossRefGoogle Scholar
  10. Brandler S, Tangy F (2013) Vaccines in development against West Nile virus. Viruses 5(10):2384–2409PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brinton MA (2013) Replication cycle and molecular biology of the West Nile virus. Viruses 6(1):13–53PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bryan JT, Buckland B, Hammond J, Jansen KU (2016) Prevention of cervical cancer: journey to develop the first human papillomavirus virus-like particle vaccine and the next generation vaccine. Curr Opin Chem Biol 32:34–47PubMedCrossRefGoogle Scholar
  13. Castillo-Olivares J, Wood J (2004) West Nile virus infection of horses. Vet Res 35(4):467–483PubMedCrossRefGoogle Scholar
  14. Chang DC, Liu WJ, Anraku I, Clark DC, Pollitt CC, Suhrbier A, Hall RA, Khromykh AA (2008) Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. Nat Biotechnol 26(5):571–577PubMedCrossRefGoogle Scholar
  15. Chen Q (2008) Expression and purification of pharmaceutical proteins in plants. Biol Eng 1(4):291–321CrossRefGoogle Scholar
  16. Chen Q (2011a) Expression and manufacture of pharmaceutical proteins in genetically engineered horticultural plants. Transgenic Horticultural Crops: Challenges and Opportunities - Essays by Experts, Mou B, Scorza R. Taylor & Francis, Boca Raton, pp 83–124CrossRefGoogle Scholar
  17. Chen Q (2011b) Turning a new leaf. Eur Biopharm Rev 2(56):64–68Google Scholar
  18. Chen Q (2015) Plant-made vaccines against West Nile virus are potent, safe, and economically feasible. Biotechnol J 10(5):671–680PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen Q (2016) Glycoengineering of plants yields glycoproteins with polysialylation and other defined N-glycoforms. Proc Natl Acad Sci U S A 113(34):9404–9406PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen Q (2018) Recombinant therapeutic molecules produced in plants. Adv Bota Res 86:207–244.
  21. Chen Q, Davis K (2016) The potential of plants as a system for the development and production of human biologics. F1000Research 5(912): Scholar
  22. Chen Q, Lai H (2013) Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 9(1):26–49PubMedCrossRefGoogle Scholar
  23. Chen Q, Lai H (2015) Gene delivery into plant cells for recombinant protein production. Biomed Res Int 2015:932161PubMedPubMedCentralGoogle Scholar
  24. Chen Q, He J, Phoolcharoen W, Mason HS (2011) Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccin 7(3):331–338PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen Q, Dent M, Hurtado J, Stahnke J, McNulty A, Leuzinger K, Lai H (2016) Transient protein expression by agroinfiltration in lettuce. Methods Mol Biol 1385:55–67PubMedCrossRefGoogle Scholar
  26. Chen Q, Dent M, Mason H (2018) Plant-made vaccines. In: Kermode A, Jiang L (eds) Molecular pharming: Applications, challenges, and emerging areas. John Wiley & Sons, pp 231–273. Scholar
  27. Chu JJ, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, Ng ML (2005) Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J Gen Virol 86(Pt 2):405–412PubMedCrossRefGoogle Scholar
  28. Chu JH, Chiang CC, Ng ML (2007) Immunization of flavivirus West Nile recombinant envelope domain III protein induced specific immune response and protection against West Nile virus infection. J Immunol 178(5):2699–2705PubMedCrossRefGoogle Scholar
  29. Chua AJ, Vituret C, Tan ML, Gonzalez G, Boulanger P, Ng ML, Hong SS (2013) A novel platform for virus-like particle-display of flaviviral envelope domain III: induction of Dengue and West Nile virus neutralizing antibodies. Virol J 10:129PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cielens I, Jackevica L, Strods A, Kazaks A, Ose V, Bogans J, Pumpens P, Renhofa R (2014) Mosaic RNA phage VLPs carrying domain III of the West Nile virus E protein. Mol Biotechnol 56(5):459–469PubMedCrossRefGoogle Scholar
  31. Coconi-Linares N, Ortega-Davila E, Lopez-Gonzalez M, Garcia-Machorro J, Garcia-Cordero J, Steinman RM, Cedillo-Barron L, Gomez-Lim MA (2013) Targeting of envelope domain III protein of DENV type 2 to DEC-205 receptor elicits neutralizing antibodies in mice. Vaccine 31(19):2366–2371PubMedCrossRefGoogle Scholar
  32. Coller BA, Pai V, Weeks-Levy C, Ogata S (2012) United States patent application No. US20120141520 A1: recombinant subunit West Nile virus vaccine for protection of human subjectsGoogle Scholar
  33. Cribbs DH, Ghochikyan A, Vasilevko V, Tran M, Petrushina I, Sadzikava N, Babikyan D, Kesslak P, Kieber-Emmons T, Cotman CW, Agadjanyan MG (2003) Adjuvant-dependent modulation of Th1 and Th2 responses to immunization with beta-amyloid. Int Immunol 15(4):505–514PubMedPubMedCentralCrossRefGoogle Scholar
  34. Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning ML (2001) West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 75(9):4040–4047PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dayan GH, Pugachev K, Bevilacqua J, Lang J, Monath TP (2013) Preclinical and clinical development of a YFV 17 D-based chimeric vaccine against West Nile virus. Viruses 5(12):3048–3070PubMedPubMedCentralCrossRefGoogle Scholar
  36. De Filette M, Soehle S, Ulbert S, Richner J, Diamond MS, Sinigaglia A, Barzon L, Roels S, Lisziewicz J, Lorincz O, Sanders NN (2014) Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge. PLoS ONE 9(2):e87837PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, Sakuntabhai A, Cao-Lormeau V-M, Malasit P, Rey FA, Mongkolsapaya J, Screaton GR (2016) Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol advance online publicationGoogle Scholar
  38. Demento SL, Bonafe N, Cui W, Kaech SM, Caplan MJ, Fikrig E, Ledizet M, Fahmy TM (2010) TLR9-targeted biodegradable nanoparticles as immunization vectors protect against West Nile encephalitis. J Immunol 185(5):2989–2997PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dent M, Hurtado J, Paul AM, Sun H, Lai H, Yang M, Esqueda A, Bai F, Steinkellner H, Chen Q (2016) Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity. J Gen Virol 97(12):3280–3290PubMedPubMedCentralCrossRefGoogle Scholar
  40. Durbin AP, Wright PF, Cox A, Kagucia W, Elwood D, Henderson S, Wanionek K, Speicher J, Whitehead SS, Pletnev AG (2013) The live attenuated chimeric vaccine rWN/DEN4Delta30 is well-tolerated and immunogenic in healthy flavivirus-naive adult volunteers. Vaccine 31(48):5772–5777PubMedCrossRefGoogle Scholar
  41. Hall RA, Nisbet DJ, Pham KB, Pyke AT, Smith GA, Khromykh AA (2003) DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus. Proc Natl Acad Sci U S A 100(18):10460–10464PubMedPubMedCentralCrossRefGoogle Scholar
  42. Halstead SB (2014) Dengue antibody-dependent enhancement: knowns and unknowns. Microbiol Spectr 2(6)Google Scholar
  43. Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268(5211):714–716PubMedCrossRefGoogle Scholar
  44. He J, Lai H, Brock C, Chen Q (2012) A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. J Biomed Biotechnol 2012:106783PubMedCrossRefGoogle Scholar
  45. He J, Peng L, Lai H, Hurtado J, Stahnke J, Chen Q (2014) A plant-produced antigen elicits potent immune responses against West Nile virus in mice. Biomed Res Int 2014:952865PubMedPubMedCentralGoogle Scholar
  46. Hefferon K (2014) Plant virus expression vector development: new perspectives. Biomed Res Int 2014:785382PubMedPubMedCentralCrossRefGoogle Scholar
  47. Huang Z, Chen Q, Hjelm B, Arntzen C, Mason H (2009) A DNA replicon system for rapid high-level production of virus-like particles in plants. Biotechnol Bioeng 103(4):706–714PubMedPubMedCentralCrossRefGoogle Scholar
  48. Iyer AV, Kousoulas KG (2013) A review of vaccine approaches for West Nile virus. Int J Environ Res Public Health 10(9):4200–4223PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kanai R, Kar K, Anthony K, Gould LH, Ledizet M, Fikrig E, Marasco WA, Koski RA, Modis Y (2006) Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol 80(22):11000–11008PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kim TG, Kim MY, Huy NX, Kim SH, Yang MS (2013) M cell-targeting ligand and consensus dengue virus envelope protein domain III fusion protein production in transgenic rice calli. Mol Biotechnol 54(3):880–887PubMedCrossRefGoogle Scholar
  51. Kim MY, Li JY, Tien NQ, Yang M. S. (2016). Expression and assembly of cholera toxin B subunit and domain III of dengue virus 2 envelope fusion protein in transgenic potatoes. Protein Expr PurifGoogle Scholar
  52. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9(3):311–322PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kwon K-C, Daniell H (2015) Low-cost oral delivery of protein drugs bioencapsulated in plant cells. Plant Biotechnol J 13(8):1017–1022PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lai H, Chen Q (2012) Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current good manufacture practice regulations. Plant Cell Rep 31(3):573–584PubMedCrossRefGoogle Scholar
  55. Lai H, Engle M, Fuchs A, Keller T, Johnson S, Gorlatov S, Diamond MS, Chen Q (2010) Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc Natl Acad Sci U S A 107(6):2419–2424PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lai H, He J, Engle M, Diamond MS, Chen Q (2012) Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol J 10(1):95–104PubMedCrossRefGoogle Scholar
  57. Lai H, Paul AM, Sun H, He J, Yang M, Bai F, Chen Q (2018) A plant-produced vaccine protects mice against lethal west nile virus infection without enhancing zika or dengue virus infectivity. Vaccine 36(14):1846–1852PubMedCrossRefGoogle Scholar
  58. Lakshmi PS, Verma D, Yang X, Lloyd B, Daniell H (2013) Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE 8(1):e54708PubMedPubMedCentralCrossRefGoogle Scholar
  59. Larocca RA, Abbink P, Peron JPS, de A. Zanotto PM, Iampietro MJ, Badamchi-Zadeh A, Boyd M, Ng’ang’a D, Kirilova M, Nityanandam R, Mercado NB, Li Z, Moseley ET, Bricault CA, Borducchi EN, Giglio PB, Jetton D, Neubauer G, Nkolola JP, Maxfield LF, De La Barrera RA, Jarman RG, Eckels KH, Michael NL, Thomas SJ, Barouch DH (2016) Vaccine protection against Zika virus from Brazil. Nature 536(7617): 474–478PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ledgerwood JE, Pierson TC, Hubka SA, Desai N, Rucker S, Gordon IJ, Enama ME, Nelson S, Nason M, Gu W, Bundrant N, Koup RA, Bailer RT, Mascola JR, Nabel GJ, Graham BS, Team VRCS (2011) A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis 203(10):1396–1404PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ledizet M, Kar K, Foellmer HG, Wang T, Bushmich SL, Anderson JF, Fikrig E, Koski RA (2005) A recombinant envelope protein vaccine against West Nile virus. Vaccine 23(30):3915–3924PubMedCrossRefGoogle Scholar
  62. Leuzinger K, Dent M, Hurtado J, Stahnke J, Lai H, Zhou X, Chen Q (2013) Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp (77)Google Scholar
  63. Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216(2):366–377PubMedCrossRefGoogle Scholar
  64. Lieberman MM, Clements DE, Ogata S, Wang G, Corpuz G, Wong T, Martyak T, Gilson L, Coller BA, Leung J, Watts DM, Tesh RB, Siirin M, Travassos da Rosa A, Humphreys T, Weeks-Levy C (2007) Preparation and immunogenic properties of a recombinant West Nile subunit vaccine. Vaccine 25(3):414–423PubMedCrossRefGoogle Scholar
  65. Lieberman MM, Nerurkar VR, Luo H, Cropp B, Carrion R Jr, de la Garza M, Coller BA, Clements D, Ogata S, Wong T, Martyak T, Weeks-Levy C (2009) Immunogenicity and protective efficacy of a recombinant subunit West Nile virus vaccine in rhesus monkeys. Clin Vaccine Immunol 16(9):1332–1337PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liu Clarke J, Paruch L, Dobrica MO, Caras I, Tucureanu C, Onu A, Ciulean S, Stavaru C, Eerde A, Wang Y, Steen H, Haugslien S, Petrareanu C, Lazar C, Popescu I, Bock R, Dubuisson J, Branza-Nichita N (2017) Lettuce-produced hepatitis C virus E1E2 heterodimer triggers immune responses in mice and antibody production after oral vaccination. Plant Biotechnol JGoogle Scholar
  67. Lyon GM, Mehta AK, Varkey JB, Brantly K, Plyler L, McElroy AK, Kraft CS, Towner JS, Spiropoulou C, Stroher U, Uyeki TM, Ribner BS, U. Emory Serious Communicable Diseases (2014) Clinical care of two patients with Ebola virus disease in the United States. N Engl J Med 371(25): 2402–2409PubMedCrossRefGoogle Scholar
  68. Martin JE, Pierson TC, Hubka S, Rucker S, Gordon IJ, Enama ME, Andrews CA, Xu Q, Davis BS, Nason M, Fay M, Koup RA, Roederer M, Bailer RT, Gomez PL, Mascola JR, Chang GJ, Nabel GJ, Graham BS (2007) A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J Infect Dis 196(12):1732–1740PubMedPubMedCentralCrossRefGoogle Scholar
  69. Martinez CA, Topal E, Giulietti AM, Talou JR, Mason H (2010) Exploring different strategies to express Dengue virus envelope protein in a plant system. Biotechnol Lett 32(6):867–875PubMedCrossRefGoogle Scholar
  70. Medigeshi GR, Hirsch AJ, Brien JD, Uhrlaub JL, Mason PW, Wiley C, Nikolich-Zugich J, Nelson JA (2009) West Nile virus capsid degradation of claudin proteins disrupts epithelial barrier function. J Virol 83(12):6125–6134PubMedPubMedCentralCrossRefGoogle Scholar
  71. Minke JM, Siger L, Karaca K, Austgen L, Gordy P, Bowen R, Renshaw RW, Loosmore S, Audonnet JC, Nordgren B (2004) Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge. Arch Virol Suppl 18:221–230Google Scholar
  72. Monath TP, Liu J, Kanesa-Thasan N, Myers GA, Nichols R, Deary A, McCarthy K, Johnson C, Ermak T, Shin S, Arroyo J, Guirakhoo F, Kennedy JS, Ennis FA, Green S, Bedford P (2006) A live, attenuated recombinant West Nile virus vaccine. Proc Natl Acad Sci U S A 103(17):6694–6699PubMedPubMedCentralCrossRefGoogle Scholar
  73. Morens DM (1994) Antibody-dependent of enhancement of infection and the pathogenesis of viral disease. Clin Inf Dis 19:500–512CrossRefGoogle Scholar
  74. Ng T, Hathaway D, Jennings N, Champ D, Chiang YW, Chu HJ (2003) Equine vaccine for West Nile virus. Dev Biol (Basel) 114:221–227Google Scholar
  75. Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH (2005) Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 437(7059):764–769PubMedCrossRefGoogle Scholar
  76. Ohtaki N, Takahashi H, Kaneko K, Gomi Y, Ishikawa T, Higashi Y, Kurata T, Sata T, Kojima A (2010) Immunogenicity and efficacy of two types of West Nile virus-like particles different in size and maturation as a second-generation vaccine candidate. Vaccine 28(40):6588–6596PubMedCrossRefGoogle Scholar
  77. Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond MS (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11(5):522–530PubMedPubMedCentralCrossRefGoogle Scholar
  78. Pardi N, Weissman D (2017) Nucleoside modified mRNA vaccines for infectious diseases. In: Kramps T, Elbers K (eds) RNA vaccines: methods and protocols. Springer, New York, NY, pp 109–121CrossRefGoogle Scholar
  79. Pelosi A, Shepherd R, Guzman GD, Hamill JD, Meeusen E, Sanson G, Walmsley AM (2011) The release and induced immune responses of a plant-made and delivered antigen in the mouse gut. Curr Drug Deliv 8(6):612–621PubMedCrossRefGoogle Scholar
  80. Pelosi A, Piedrafita D, De Guzman G, Shepherd R, Hamill JD, Meeusen E, Walmsley AM (2012) The effect of plant tissue and vaccine formulation on the oral immunogenicity of a model plant-made antigen in sheep. PLoS ONE 7(12):e52907PubMedPubMedCentralCrossRefGoogle Scholar
  81. Peyret H, Lomonossoff GP (2013) The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. Plant Mol Biol 83(1–2):51–58PubMedPubMedCentralCrossRefGoogle Scholar
  82. Peyret H, Lomonossoff GP (2015) When plant virology met Agrobacterium: the rise of the deconstructed clones. Plant Biotechnol J 13(8):1121–1135PubMedPubMedCentralCrossRefGoogle Scholar
  83. Phoolcharoen W, Bhoo SH, Lai H, Ma J, Arntzen CJ, Chen Q, Mason HS (2011) Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J 9(7):807–816PubMedCrossRefGoogle Scholar
  84. Pinto AK, Richner JM, Poore EA, Patil PP, Amanna IJ, Slifka MK, Diamond MS (2013) A hydrogen peroxide-inactivated virus vaccine elicits humoral and cellular immunity and protects against lethal West Nile virus infection in aged mice. J Virol 87(4):1926–1936PubMedPubMedCentralCrossRefGoogle Scholar
  85. Poore EA, Slifka DK, Raue HP, Thomas A, Hammarlund E, Quintel BK, Torrey LL, Slifka AM, Richner JM, Dubois ME, Johnson LP, Diamond MS, Slifka MK, Amanna IJ (2017) Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine 35(2):283–292PubMedCrossRefGoogle Scholar
  86. Qiao M, Ashok M, Bernard KA, Palacios G, Zhou ZH, Lipkin WI, Liang TJ (2004) Induction of sterilizing immunity against West Nile Virus (WNV), by immunization with WNV-like particles produced in insect cells. J Infect Dis 190(12):2104–2108PubMedCrossRefGoogle Scholar
  87. Ramanathan MP, Kutzler MA, Kuo YC, Yan J, Liu H, Shah V, Bawa A, Selling B, Sardesai NY, Kim JJ, Weiner DB (2009) Coimmunization with an optimized IL15 plasmid adjuvant enhances humoral immunity via stimulating B cells induced by genetically engineered DNA vaccines expressing consensus JEV and WNV E DIII. Vaccine 27(32):4370–4380PubMedCrossRefGoogle Scholar
  88. Rizzoli A, Jimenez-Clavero MA, Barzon L, Cordioli P, Figuerola J, Koraka P, Martina B, Moreno A, Nowotny N, Pardigon N, Sanders N, Ulbert S, Tenorio A (2015) The challenge of West Nile virus in Europe: knowledge gaps and research priorities. Euro Surveill 20(20)PubMedCrossRefGoogle Scholar
  89. Roose K, De Baets S, Schepens B, Saelens X (2013) Hepatitis B core-based virus-like particles to present heterologous epitopes. Expert Rev Vaccines 12(2):183–198PubMedCrossRefGoogle Scholar
  90. Rosales-Mendoza S, Soria-Guerra RE, Moreno-Fierros L, Govea-Alonso DO, Herrera-Diaz A, Korban SS, Alpuche-Solis AG (2011) Immunogenicity of nuclear-encoded LTB:ST fusion protein from Escherichia coli expressed in tobacco plants. Plant Cell Rep 30(6):1145–1152PubMedCrossRefGoogle Scholar
  91. Sabalza M, Christou P, Capell T (2014) Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnol Lett 36(12):2367–2379PubMedCrossRefGoogle Scholar
  92. Saejung W, Fujiyama K, Takasaki T, Ito M, Hori K, Malasit P, Watanabe Y, Kurane I, Seki T (2007) Production of dengue 2 envelope domain III in plant using TMV-based vector system. Vaccine 25(36):6646–6654PubMedCrossRefGoogle Scholar
  93. Santi L, Batchelor L, Huang Z, Hjelm B, Kilbourne J, Arntzen CJ, Chen Q, Mason HS (2008) An efficient plant viral expression system generating orally immunogenic Norwalk virus-like particles. Vaccine 26(15):1846–1854PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sequeira JC, Harrison BD (1982) Serological studies on the cassave latent virus. Ann Appl Biol 101:33–42CrossRefGoogle Scholar
  95. Shahid N, Daniell H (2016) Plant-based oral vaccines against zoonotic and non-zoonotic diseases. Plant Biotechnol J 14(11):2079–2099PubMedPubMedCentralCrossRefGoogle Scholar
  96. Spohn G, Jennings GT, Martina BE, Keller I, Beck M, Pumpens P, Osterhaus AD, Bachmann MF (2010) A VLP-based vaccine targeting domain III of the West Nile virus E protein protects from lethal infection in mice. Virol J 7:146PubMedPubMedCentralCrossRefGoogle Scholar
  97. Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, Bianchi S, Vanzetta F, Minola A, Jaconi S, Mele F, Foglierini M, Pedotti M, Simonelli L, Dowall S, Atkinson B, Percivalle E, Simmons CP, Varani L, Blum J, Baldanti F, Cameroni E, Hewson R, Harris E, Lanzavecchia A, Sallusto F, Corti D (2016) Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353(6301):823PubMedCrossRefGoogle Scholar
  98. Su J, Sherman A, Doerfler PA, Byrne BJ, Herzog RW, Daniell H (2015a) Oral delivery of acid alpha Glucosidase epitopes expressed in plant chloroplasts suppresses antibody formation in treatment of Pompe mice. Plant Biotechnol J 13(8):1023–1032PubMedPubMedCentralCrossRefGoogle Scholar
  99. Su J, Zhu L, Sherman A, Wang X, Lin S, Kamesh A, Norikane JH, Streatfield SJ, Herzog RW, Daniell H (2015b) Low cost industrial production of coagulation factor IX bioencapsulated in lettuce cells for oral tolerance induction in hemophilia B. Biomaterials 70:84–93PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sun H, Chen Q, Lai H (2017) Development of antibody therapeutics against faviviruses. Int J Mol Sci 19(1):54–84.
  101. Takeyama N, Kiyono H, Yuki Y (2015) Plant-based vaccines for animals and humans: recent advances in technology and clinical trials. Ther Adv Vaccines 3(5–6):139–154PubMedPubMedCentralCrossRefGoogle Scholar
  102. Taylor TJ, Diaz F, Colgrove RC, Bernard KA, DeLuca NA, Whelan SP, Knipe DM (2016) Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector. Virology 496:186–193PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tuse D, Tu T, McDonald K (2014) Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes. BioMed Research International 2014, 10.
  104. van Marle G, Antony J, Ostermann H, Dunham C, Hunt T, Halliday W, Maingat F, Urbanowski MD, Hobman T, Peeling J, Power C (2007) West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J Virol 81(20):10933–10949PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wang T, Anderson JF, Magnarelli LA, Wong SJ, Koski RA, Fikrig E (2001) Immunization of mice against West Nile virus with recombinant envelope protein. J Immunol 167(9):5273–5277PubMedCrossRefGoogle Scholar
  106. Wang Y, Deng H, Zhang X, Xiao H, Jiang Y, Song Y, Fang L, Xiao S, Zhen Y, Chen H (2009) Generation and immunogenicity of Japanese encephalitis virus envelope protein expressed in transgenic rice. Biochem Biophys Res Commun 380(2):292–297PubMedCrossRefGoogle Scholar
  107. Wilken LR, Nikolov ZL (2012) Recovery and purification of plant-made recombinant proteins. Biotechnol Adv 30(2):419–433PubMedCrossRefGoogle Scholar
  108. Xu Z, Anderson R, Hobman TC (2011) The capsid-binding nucleolar helicase DDX56 is important for infectivity of West Nile virus. J Virol 85(11):5571–5580PubMedPubMedCentralCrossRefGoogle Scholar
  109. Yamshchikov V, Manuvakhova M, Rodriguez E, Hebert C (2017) Development of a human live attenuated West Nile infectious DNA vaccine: Identification of a minimal mutation set conferring the attenuation level acceptable for a human vaccine. Virology 500:122–129PubMedCrossRefGoogle Scholar
  110. Yang JS, Ramanathan MP, Muthumani K, Choo AY, Jin SH, Yu QC, Hwang DS, Choo DK, Lee MD, Dang K, Tang W, Kim JJ, Weiner DB (2002) Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg Infect Dis 8(12):1379–1384PubMedPubMedCentralCrossRefGoogle Scholar
  111. Yang M, Dent M, Lai H, Sun H, Chen Q (2017a) Immunization of Zika virus envelope protein domain III induces specific and neutralizing immune responses against Zika virus. Vacccine 35(33):4287–4294CrossRefGoogle Scholar
  112. Yang M, Lai H, Sun H, Chen Q (2017b) Virus-like particles that display Zika virus envelope protein domain III induce potent neutralizing immune responses in mice. Scientific Reports 7(1):7679PubMedPubMedCentralCrossRefGoogle Scholar
  113. Yang M, Sun H, Lai H, Hurtado J, Chen Q (2017c) Plant-produced Zika virus envelope protein elicits neutralizing immune responses that correlate with protective immunity against Zika virus in mice. Plant Biotechnol J 16:572–580. Scholar
  114. Zeller HG, Schuffenecker I (2004) West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis 23(3):147–156PubMedCrossRefGoogle Scholar
  115. Zhao Q, Li S, Yu H, Xia N, Modis Y (2013) Virus-like particle-based human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol 31(11):654–663PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Immunotherapy, Vaccines & VirotherapyBiodesign InstituteTempeUSA
  2. 2.School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations