Diseases with Limited Research of Plant-Based Vaccines
Abstract
There are a number of diseases which are important globally in terms of the effect they have on livestock but for which the development of recombinant plant-produced vaccines is preliminary. For many of these diseases such as bovine viral diarrhoea (BVD), bovine rotavirus (BRV), bovine herpes (BoH), transmissible gastroenteritis (TGE) in pigs, infectious bronchitis (IB) in chickens, bluetongue (BT) in sheep, Rift Valley fever (RVF) in sheep and coccidiosis in chickens, commercially available live-attenuated or killed vaccines are available. Although most are effective to varying degrees, there are numerous issues with manufacture and potential reassortment of the vaccine strains. For some diseases such as bovine papillomavirus (BPV) infections and Crimean-Congo haemorrhagic fever (CCHF), there are no commercially available vaccines, and limited studies have been conducted on their development. This chapter discusses some of the research developments in plant-produced vaccine candidates which have potential for further development towards commercialisation.
Keywords
Preliminary BVD BRV BoH TGE IB BT RVF CCHF BPVReferences
- Abrantes J, van der Loo W, Le Pendu J, Esteves PJ (2012) Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review. Vet Res 43(1):12–12. https://doi.org/10.1186/1297-9716-43-12CrossRefPubMedPubMedCentralGoogle Scholar
- Aguirreburualde MSP et al (2013) Efficacy of a BVDV subunit vaccine produced in alfalfa transgenic plants. Vet Immunol Immunopathol 151(3–4):315–324. https://doi.org/10.1016/j.vetimm.2012.12.004CrossRefGoogle Scholar
- Alves DL, Pereira LLF, van Drunen LH (2014) Bovine herpesvirus glycoprotein D: a review of its structural characteristics and applications in vaccinology. Vet Res 45(1):111. https://doi.org/10.1186/s13567-014-0111-xCrossRefGoogle Scholar
- Bande F, Arshad SS, Hair Bejo M, Moeini H, Omar AR (2015) Progress and challenges toward the development of vaccines against avian infectious bronchitis. J Immunol Res 2015:12. https://doi.org/10.1155/2015/424860CrossRefGoogle Scholar
- Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M (2013) Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 100(1):159–189. https://doi.org/10.1016/j.antiviral.2013.07.006CrossRefPubMedGoogle Scholar
- Bhanuprakash V, Indrani BK, Hosamani M, Balamurugan V, Singh RK (2009) Bluetongue vaccines: the past, present and future. Expert Rev Vaccines 8(2):191–204. https://doi.org/10.1586/14760584.8.2.191CrossRefPubMedGoogle Scholar
- Borzacchiello G, Roperto F (2008) Bovine papillomaviruses, papillomas and cancer in cattle. Vet Res 39(5):45CrossRefPubMedGoogle Scholar
- Bouloy M, Flick R (2009) Reverse genetics technology for Rift Valley fever virus: current and future applications for the development of therapeutics and vaccines. Antiviral Res 84(2):101–118. https://doi.org/10.1016/j.antiviral.2009.08.002CrossRefPubMedPubMedCentralGoogle Scholar
- Brock KV, Grooms DL, Givens MD (2008) Reproductive disease and persistent infections bovine viral diarrhea virus. Blackwell, Oxford, pp 145–156Google Scholar
- Campo MS (1995) Infection by bovine papillomavirus and prospects for vaccination. Trends Microbiol 3(3):92–97CrossRefPubMedGoogle Scholar
- Carpenter S, Mellor PS, Torr SJ (2008) Control techniques for Culicoides biting midges and their application in the U.K. and northwestern Palearctic. Med Vet Entemol 22:175–187CrossRefGoogle Scholar
- Castañón S et al (1999) Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J Virol 73(5):4452–4455PubMedPubMedCentralGoogle Scholar
- Cavanagh D, Davis PJ, Darbyshire JH, Peters RW (1986) Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J Gen Virol 67(7):1435–1442. https://doi.org/10.1099/0022-1317-67-7-1435CrossRefPubMedGoogle Scholar
- Chen EY, Howley PM, Levinson AD, Seeburg PH (1982) The primary structure and genetic organization of the bovine papillomavirus type 1 genome. Nature 299(5883):529–534CrossRefPubMedGoogle Scholar
- Choi KH et al (2004) The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Proc Natl Acad Sci USA 101(13):4425–4430. https://doi.org/10.1073/pnas.0400660101CrossRefPubMedGoogle Scholar
- Christova I, Kovacheva O, Georgieva G, Ivanova S, Argirov D (2010) Vaccine against Congo-crimean haemorrhagic fever virus—Bulgarian input in fighting the disease. ProblInfectParasitDis 37:7–8Google Scholar
- Cosby KC, Yamanouchi K (2006) Immunology of rinderpest—an immunosuppression but a lifelong vaccine protection. In: Barrett T, Pastoret P-P, Taylor W (eds) Rinderpest and Peste des Petits Ruminants. Elsevier, Oxford, UK, pp 196–222CrossRefGoogle Scholar
- de Boer SM et al (2010) Rift valley fever virus subunit vaccines confer complete protection against a lethal virus challenge. Vaccine 28:2330–2339CrossRefPubMedGoogle Scholar
- Dhama K, Chauhan RS, Mahendran M, Malik SVS (2009) Rotavirus diarrhea in bovines and other domestic animals. Vet Res Commun 33(1):1–23. https://doi.org/10.1007/s11259-008-9070-xCrossRefPubMedGoogle Scholar
- Dong J-L, Liang B-G, Jin Y-S, Zhang W-J, Wang T (2005) Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection. Virology 339(2):153–163. https://doi.org/10.1016/j.virol.2005.06.004CrossRefPubMedGoogle Scholar
- Elbers ARW, van der Spek AN, van Rijn PA (2009) Epidemiologic characteristics of bluetongue virus serotype 8 laboratory-confirmed outbreaks in The Netherlands in 2007 and a comparison with the situation in 2006. Prev Vet Med 92(1–2):1–8. https://doi.org/10.1016/j.prevetmed.2009.08.007CrossRefPubMedGoogle Scholar
- Fernández-Fernández MR, Mouriño M, Rivera J, Rodríguez F, Plana-Durán J, García JA (2001) Protection of rabbits against rabbit hemorrhagic disease virus by immunization with the VP60 protein expressed in plants with a potyvirus-based vector. Virology 280(2):283–291. https://doi.org/10.1006/viro.2000.0762CrossRefPubMedGoogle Scholar
- Filgueira DP et al. (2003) Bovine herpes virus gD protein produced in plants using a recombinant tobacco mosaic virus (TMV) vector possesses authentic antigenicity. Vaccine 21 https://doi.org/10.1016/s0264-410x(03)00495-x
- French TJ, Marshall JJ, Roy P (1990) Assembly of double-shelled, virus like particles of bluetongue virus by the simultaneous expression of four structural proteins. J Virol 64(12):5695–5700PubMedPubMedCentralGoogle Scholar
- Fulton RW (2008) Vaccines bovine viral diarrhea virus. Blackwell, Oxford, pp 209–222Google Scholar
- Gao Y et al (2015) A transgenic ginseng vaccine for bovine viral diarrhea. Virol J 12:73. https://doi.org/10.1186/s12985-015-0301-9CrossRefPubMedPubMedCentralGoogle Scholar
- Ghiasi SM et al (2012) Molecular farming, an effective system for the production of immunogenic Crimean-Congo Hemorrhagic fever virus glycoprotein. Prog Biol Sci 2(1):12–29Google Scholar
- Gómez N, Carrillo C, Salinas J, Parra F, Borca MV, Escribano JM (1998) Expression of immunogenic glycoprotein S polypeptides from transmissible gastroenteritis coronavirus in transgenic plants. Virology 249(2):352–358. https://doi.org/10.1006/viro.1998.9315CrossRefPubMedGoogle Scholar
- Gómez N et al (2000) Oral immunogenicity of the plant derived spike protein from swine-transmissible gastroenteritis coronavirus. Adv Virol 145(8):1725–1732. https://doi.org/10.1007/s007050070087CrossRefGoogle Scholar
- Graham DA (2013) Bovine herpes virus-1 (BoHV-1) in cattle—a review with emphasis on reproductive impacts and the emergence of infection in Ireland and the United Kingdom. Irish Vet J 66(1):15–15. https://doi.org/10.1186/2046-0481-66-15CrossRefGoogle Scholar
- Habjan M et al (2009) Efficient production of Rift Valley fever virus-like particles: the antiviral protein MxA can inhibit primary transcription of bunyaviruses. Virology 385(2):400–408. https://doi.org/10.1016/j.virol.2008.12.011CrossRefPubMedGoogle Scholar
- Hamad MA, Al-Shammari AM, Odisho SM, Yaseen NY (2016) Molecular and phylogenetic analysis of bovine papillomavirus type 1: first report in Iraqi cattle. Adv Virol 2016:7. https://doi.org/10.1155/2016/2143024CrossRefGoogle Scholar
- Hammond RW, Nemchinov LG (2009) Plant production of veterinary vaccines and therapeutics. In: Karasev AV (ed) Plant-produced Microbial Vaccines, vol 332. Springer, Berlin, pp 79–102CrossRefGoogle Scholar
- Hoogstraal H (1979) The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe and Africa. J Med Entomol 15:307–417CrossRefPubMedGoogle Scholar
- Ikegami T, Makino S (2009) Rift valley fever vaccines. Vaccine 27(Supplement 4):D69–D72. https://doi.org/10.1016/j.vaccine.2009.07.046CrossRefPubMedGoogle Scholar
- Jackwood MW (2012) Review of infectious bronchitis virus around the world. Avian Dis 56(4):634–641. https://doi.org/10.1637/10227-043012-review.1CrossRefPubMedGoogle Scholar
- Jenckel M et al (2015) Complete coding genome sequence of putative novel bluetongue virus serotype 27. Genome Announcements 3(2) 10.1128/genomea.00016-15CrossRefPubMedPubMedCentralGoogle Scholar
- Johnson MA, Pooley C, Ignjatovic J, Tyack SG (2003) A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus. Vaccine 21(21–22):2730–2736. https://doi.org/10.1016/S0264-410X(03)00227-5CrossRefPubMedGoogle Scholar
- Kalbina I et al (2016) Arabidopsis thaliana plants expressing rift valley fever virus antigens: mice exhibit systemic immune responses as the result of oral administration of the transgenic plants. Protein Expr Purif 127:61–67. https://doi.org/10.1016/j.pep.2016.07.003CrossRefPubMedGoogle Scholar
- Keshtkar-Jahromi M, Kuhn JH, Christova I, Bradfute SB, Jahrling PB, Bavari S (2011) Crimean-Congo hemorrhagic fever: current and future prospects of vaccines and therapies. Antiviral Res 90(2):85–92. https://doi.org/10.1016/j.antiviral.2011.02.010CrossRefPubMedGoogle Scholar
- Khandelwal A, Lakshmi Sita G, Shaila MS (2003) Oral immunization of cattle with hemagglutinin protein of rinderpest virus expressed in transgenic peanut induces specific immune responses. Vaccine 21(23):3282–3289. https://doi.org/10.1016/S0264-410X(03)00192-0CrossRefPubMedGoogle Scholar
- Khandelwal A, Renukaradhya GJ, Rajasekhar M, Sita GL, Shaila MS (2004) Systemic and oral immunogenicity of hemagglutinin protein of rinderpest virus expressed by transgenic peanut plants in a mouse model. Virology 323(2):284–291. https://doi.org/10.1016/j.virol.2004.02.030CrossRefPubMedGoogle Scholar
- Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci 89(24):12180–12184CrossRefPubMedGoogle Scholar
- Labbé M, Charpilienne A, Crawford SE, Estes MK, Cohen J (1991) Expression of rotavirus VP2 produces empty core like particles. J Virol 65(6):2946–2952PubMedPubMedCentralGoogle Scholar
- Lamphear BJ et al (2002) Delivery of subunit vaccines in maize seed. J Control Release 85(1–3):169–180. https://doi.org/10.1016/S0168-3659(02)00282-1CrossRefPubMedGoogle Scholar
- Lamphear BJ, Jilka JM, Kesl L, Welter M, Howard JA, Streatfield SJ (2004) A corn-based delivery system for animal vaccines: an oral transmissible gastroenteritis virus vaccine boosts lactogenic immunity in swine. Vaccine 22(19):2420–2424. https://doi.org/10.1016/j.vaccine.2003.11.066CrossRefPubMedGoogle Scholar
- Lanyon SR, Hill FI, Reichel MP, Brownlie J (2014) Bovine viral diarrhoea: pathogenesis and diagnosis. Vet J 199(2):201–209. https://doi.org/10.1016/j.tvjl.2013.07.024CrossRefPubMedGoogle Scholar
- Laude H, Rasschaert D, Delmas B, Godet M, Gelfi J, Charley B (1990) Molecular biology of transmissible gastroenteritis virus. Vet Microbiol 23(1):147–154. https://doi.org/10.1016/0378-1135(90)90144-KCrossRefPubMedGoogle Scholar
- Lentz EM, Mozgovoj MV, Bellido D, Santos MJD, Wigdorovitz A, Bravo-Almonacid FF (2011) VP8* antigen produced in tobacco transplastomic plants confers protection against bovine rotavirus infection in a suckling mouse model. J Biotechnol 156(2):100–107. https://doi.org/10.1016/j.jbiotec.2011.08.023CrossRefPubMedGoogle Scholar
- Liu L, Celma CCP, Roy P (2008) Rift valley fever virus structural proteins: expression, characterization and assembly of recombinant proteins. Virol J 5:82–82. https://doi.org/10.1186/1743-422X-5-82CrossRefPubMedPubMedCentralGoogle Scholar
- Love AJ, Chapman SN, Matic S, Noris E, Lomonossoff GP, Taliansky M (2012) In planta production of a candidate vaccine against bovine papillomavirus type 1. Planta 236(4):1305–1313. https://doi.org/10.1007/s00425-012-1692-0CrossRefPubMedGoogle Scholar
- Maan NS et al (2012) Identification and differentiation of the twenty six bluetongue virus serotypes by RT–PCR Amplification of the serotype-specific genome segment 2. PLoS ONE 7(2):e32601. https://doi.org/10.1371/journal.pone.0032601CrossRefPubMedPubMedCentralGoogle Scholar
- Maclachlan N, Drew C, Darpel K, Worwa G (2009) The pathology and pathogenesis of bluetongue. J Comp Pathol 141:1–16CrossRefPubMedGoogle Scholar
- Martin SJ (1986) The structure and composition of morbilliviruses: a brief review. Rev Sci Tech Off Int Epiz 5(9):389–393CrossRefGoogle Scholar
- Martín-Alonso JM, Castañón S, Alonso P, Parra F, Ordás R (2003) Oral immunization using tuber extracts from transgenic potato plants expressing rabbit hemorrhagic disease virus capsid protein. Transgenic Res 12(1):127–130. https://doi.org/10.1023/A:1022112717331CrossRefPubMedGoogle Scholar
- Matsumura T, Itchoda N, Tsunemitsu H (2002) Production of immunogenic VP6 protein of bovine group A rotavirus in transgenic potato plants. Adv Virol 147(6):1263–1270. https://doi.org/10.1007/s00705-002-0808-4CrossRefGoogle Scholar
- Mertens PP, Diprose J, Maan S, Singh KP, Attoui H, Samuel AR (2004) Bluetongue virus replication, molecular and structural biology. Vet Ital 40(4):426–37PubMedGoogle Scholar
- Munday JS (2014) Bovine and human papillomaviruses. Vet Pathol 51(6):1063–1075. https://doi.org/10.1177/0300985814537837CrossRefPubMedGoogle Scholar
- Muylkens B, Thiry J, Kirten P, Schynts F, Thiry E (2007) Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis. Vet Res 38(2):181–209CrossRefPubMedGoogle Scholar
- Näslund J et al (2009) Vaccination with virus-like particles protects mice from lethal infection of rift valley fever virus. Virology 385(2):409–415. https://doi.org/10.1016/j.virol.2008.12.012CrossRefPubMedGoogle Scholar
- Nelson G, Marconi P, Periolo O, La Torre J, Alvarez MA (2012) Immunocompetent truncated E2 glycoprotein of bovine viral diarrhea virus (BVDV) expressed in nicotiana tabacum plants: a candidate antigen for new generation of veterinary vaccines. Vaccine 30(30):4499–4504. https://doi.org/10.1016/j.vaccine.2012.04.068CrossRefPubMedGoogle Scholar
- OIE (2008a) Rinderpest, vol Ch 2.1.15Google Scholar
- OIE (2008b) Transmissible gastroenteritis, vol Ch 2.8.11Google Scholar
- Papp H et al (2013) Review of group A rotavirus strains reported in swine and cattle. Vet Microbiol 165(3–4):190–199. https://doi.org/10.1016/j.vetmic.2013.03.020CrossRefPubMedGoogle Scholar
- Pecora A, Aguirreburualde MSP, Aguirreburualde A, Leunda MR, Odeon A, Chiavenna S, Bochoeyer D, Spitteler M, Filippi JL, Santos MJD, Levy SM (2012) Safety and efficacy of an E2 glycoprotein subunit vaccine produced in mammalian cells to prevent experimental infection with bovine viral diarrhoea virus in cattle. Vet Res Commun 36(3):157–164.CrossRefPubMedGoogle Scholar
- Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J (2010) Rift valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res 41(6) https://doi.org/10.1051/vetres/2010033CrossRefPubMedPubMedCentralGoogle Scholar
- Plowright W, Ferris RD (1962) Studies with rinderpest virus in tissue culture: the use of attenuated culture virus as a vaccine in cattle. Res Vet Sci 3:172–182Google Scholar
- Price KR (2012) Use of live vaccines for coccidiosis control in replacement layer pullets. J Appl Poult Res 21(3):679–692. https://doi.org/10.3382/japr.2011-00486CrossRefGoogle Scholar
- Raj GD, Jones RC (1997) Infectious bronchitis virus: immunopathogenesis of infection in the chicken. Avian Pathol 26(4):677–706. https://doi.org/10.1080/03079459708419246CrossRefPubMedGoogle Scholar
- Ridpath JF (2013) Immunology of BVDV vaccines. Biologicals 41(1):14–19. https://doi.org/10.1016/j.biologicals.2012.07.003CrossRefPubMedGoogle Scholar
- Roeder P, Mariner J, Kock R (2013) Rinderpest: the veterinary perspective on eradication. Philos Trans R Soc Lond B Biol Sci 368:20120139CrossRefPubMedPubMedCentralGoogle Scholar
- Roy P (1992) Bluetongue virus proteins. J Gen Virol 73(Pt 12):3051–64CrossRefPubMedGoogle Scholar
- Ruiz V, Mozgovoj MV, Dus Santos MJ, Wigdorovitz A (2015) Plant-produced viral bovine vaccines: what happened during the last 10 years? Plant Biotechnol J 13(8):1071–1077. https://doi.org/10.1111/pbi.12440CrossRefPubMedGoogle Scholar
- Saif LJ, Fernandez FM (1996) Group A rotavirus veterinary vaccines. J Infect Dis 174(Supplement_1):S98-S106 https://doi.org/10.1093/infdis/174.supplement_1.s98CrossRefPubMedGoogle Scholar
- Saif LJ, van Cott JL, Brim TA (1994) Immunity to transmissible gastroenteritis virus and porcine respiratory coronavirus infections in swine. Vet Immunol Immunopathol 43(1):89–97. https://doi.org/10.1016/0165-2427(94)90124-4CrossRefPubMedGoogle Scholar
- Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol 7:682–693CrossRefGoogle Scholar
- Saldaña S et al (2006) Production of rotavirus-like particles in tomato (Lycopersicon esculentum L.) fruit by expression of capsid proteins VP2 and VP6 and immunological studies. Viral Immunol 19(1):42–53. https://doi.org/10.1089/vim.2006.19.42CrossRefPubMedGoogle Scholar
- Samy AM, Peterson AT (2016) Climate change influences on the global potential distribution of bluetongue virus. PLoS ONE 11(3):e0150489. https://doi.org/10.1371/journal.pone.0150489CrossRefPubMedPubMedCentralGoogle Scholar
- Sathish K et al (2011) Plant expressed EtMIC2 is an effective immunogen in conferring protection against chicken coccidiosis. Vaccine 29(49):9201–9208. https://doi.org/10.1016/j.vaccine.2011.09.117CrossRefPubMedGoogle Scholar
- Sathish K et al (2012) Plant expressed coccidial antigens as potential vaccine candidates in protecting chicken against coccidiosis. Vaccine 30(30):4460–4464. https://doi.org/10.1016/j.vaccine.2012.04.076CrossRefPubMedGoogle Scholar
- Satyavathi V, Prasad V, Khandelwal A, Shaila M, Sita LG (2003) Expression of hemagglutinin protein of rinderpest virus in transgenic pigeon pea [Cajanus cajan (L.) Millsp.] plants. Plant Cell Rep 21(7):651–658 https://doi.org/10.1007/s00299-002-0540-2
- Shirley MW, Smith AL, Tomley FM (2005) The biology of avian Eimeriawith an emphasis on their control by vaccination. Adv Parasitol 60 https://doi.org/10.1016/s0065-308x(05)60005-x
- Shirley MW, Smith AL, Blake DP (2007) Challenges in the successful control of the avian coccidia. Vaccine 25 https://doi.org/10.1016/j.vaccine.2006.12.030
- Shivaramaiah C, Barta JR, Hernandez-Velasco X, Téllez G, Hargis BM (2014) Coccidiosis: recent advancements in the immunobiology of Eimeria species, preventive measures, and teh importance of vaccination as a control tool against these Apicomlexan parasites. Vet Med Res Rep 5:23–34Google Scholar
- Song CS et al (1998) Induction of protective immunity in chickens vaccinated with infectious bronchitis virus S1 glycoprotein expressed by a recombinant baculovirus. J Gen Virol 79(4):719–723. https://doi.org/10.1099/0022-1317-79-4-719CrossRefPubMedGoogle Scholar
- Sperlova A, Zendulkova D (2011) Bluetongue: a review. Vet Med 56(9):430–452CrossRefGoogle Scholar
- Spik K, Shurtleff A, McElroy AK, Guttieri MC, Hooper JW, Schmaljohn C (2006) Immunogenicity of combination DNA vaccines for rift valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine 24(21):4657–4666. https://doi.org/10.1016/j.vaccine.2005.08.034CrossRefPubMedGoogle Scholar
- Stewart M et al (2012) Protective efficacy of Bluetongue virus-like and subvirus-like particles in sheep: presence of the serotype-specific VP2, independent of its geographic lineage, is essential for protection. Vaccine 30(12):2131–2139. https://doi.org/10.1016/j.vaccine.2012.01.042CrossRefPubMedGoogle Scholar
- Thuenemann EC, Meyers AE, Verwey J, Rybicki EP, Lomonossoff GP (2013) A method for rapid production of heteromultimeric protein complexes in plants: assembly of protective bluetongue virus-like particles. Plant Biotechnol J:n/a-n/a. https://doi.org/10.1111/pbi.12076CrossRefGoogle Scholar
- Thomas C, Young NJ, Heaney J, Collins ME, Brownlie J (2009) Evaluation of efficacy of mammalian and baculovirus expressed E2 subunit vaccine candidates to bovine viral diarrhoea virus. Vaccine 27(17):2387–2393.CrossRefPubMedGoogle Scholar
- Tuboly T et al (2000) Immunogenicity of porcine transmissible gastroenteritis virus spike protein expressed in plants. Vaccine 18(19):2023–2028. https://doi.org/10.1016/S0264-410X(99)00525-3CrossRefPubMedGoogle Scholar
- van Drunen LH (2006) Rationale and perspectives on the success of vaccination against bovine herpesvirus-1. Vet Microbiol 113(3–4):275–282. https://doi.org/10.1016/j.vetmic.2005.11.002CrossRefGoogle Scholar
- van Zyl AR, Meyers AE, Rybicki EP (2016) Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana. Biotechnol Rep 9:15–24. https://doi.org/10.1016/j.btre.2015.12.001CrossRefGoogle Scholar
- Wallace DB, Ellis CE, Espach A, Smith SJ, Greyling RR, Viljoen GJ (2006) Protective immune responses induced by different recombinant vaccine regimes to rift valley fever. Vaccine 24(49–50):7181–7189. https://doi.org/10.1016/j.vaccine.2006.06.041CrossRefPubMedGoogle Scholar
- Whitehouse CA (2004) Crimean-Congo hemorrhagic fever. Antiviral Res 64:145–160CrossRefPubMedGoogle Scholar
- Wigdorovitz A et al (2004) Protective lactogenic immunity conferred by an edible peptide vaccine to bovine rotavirus produced in transgenic plants. J Gen Virol 85(7):1825–1832. https://doi.org/10.1099/vir.0.19659-0CrossRefPubMedGoogle Scholar
- Yang Y et al (2011) Immunogenicity and virus-like particle formation of rotavirus capsid proteins produced in transgenic plants. Sci China Life Sci 54(1):82–89. https://doi.org/10.1007/s11427-010-4104-3CrossRefPubMedGoogle Scholar
- Zhou J-Y et al (2004) Generation of the transgenic potato expressing full-length spike protein of infectious bronchitis virus. J Biotechnol 111(2):121–130. https://doi.org/10.1016/j.jbiotec.2004.03.012CrossRefPubMedGoogle Scholar
- Zhou B et al (2010) Oral administration of plant-based rotavirus VP6 induces antigen-specific IgAs, IgGs and passive protection in mice. Vaccine 28(37):6021–6027. https://doi.org/10.1016/j.vaccine.2010.06.094CrossRefPubMedGoogle Scholar
- Zhou ZR, Wang ML, Deng F, Li Tx HuZH, Wang HL (2011) Production of CCHF virus-like particle by a baculovirus-insect cell expression. Virologica Sinica 26:338–346CrossRefPubMedGoogle Scholar
- Zientara S, Maclachlan N, Calistri P, Sanchez-Vizcaino J, Savini G (2010) Bluetongue vaccination in Europe. Expert Rev Vaccines 9:989–991CrossRefPubMedGoogle Scholar
- Zimmermann J et al (2009) Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens. BMC Biotechnol 9(1):79. https://doi.org/10.1186/1472-6750-9-79CrossRefPubMedPubMedCentralGoogle Scholar