Diversity and Phenology of Arachnids in Igapó Forests

  • Lidianne Salvatierra


The Amazonian floodplain forests are a unique and endangered ecosystem due to intense deforestation and overexploitation. The biodiversity is largely controlled by the flood pulse, which encompasses an annual alternation of an aquatic (submerged) phase and a terrestrial, temporarily dry (emerse) phase (Junk et al. 1989). Arachnids (class Arachnida) are a diverse group of arthropod orders with an overwhelmed abundance and diversity in the Amazon rainforest. The literature on quantitative arachnofauna inventories of Amazonia is considerable, with several studies available for dryland forest (terra firme), but fewer for blackwater floodplain forests (igapó). The Tarumã-Mirim River (03°02’S, 60° 17’W) is probably the most studied site regarding the biodiversity of arachnids in igapó areas. It is a small tributary river basin of the Rio Negro near the city of Manaus, State of Amazonas, Brazil, seasonally inundated. Currently, only 298 arachnid species have been reported to igapó forests. Since terrestrial invertebrates living in Amazon have to cope with annual inundation period of several months, survival strategies are a crucial part of the sociobiology of these organisms. Species combine vertical migrations during flood events, remigration after the event, and reproduction rates as adaptations to live in igapó forests. Horizontal migration is less frequent in igapó forest for most species. Compared to the phenological studies on insect communities, those on arachnid communities are scarce. Therefore, future studies should aim to explore the abundance and distribution of arachnids and establish the species composition, effect of habitat fragmentation, and value of groups of arachnids as indicators of disturbance in igapó areas, along with phylogeny and phenological.


Amazonia Arachnids Spiders Scorpions Ricinulei Acari 


  1. Adis J (1977) Programa mínimo para análises de ecossistemas: Artrópodos terrestres em florestas inundáveis da Amazónia Central. Acta Amaz 7(2):223–229CrossRefGoogle Scholar
  2. Adis J (1981) Comparative ecological studies of the terrestrial arthropod fauna in central Amazonian inundation-forests. Amazoniana 7:87–173Google Scholar
  3. Adis J (1984) 'Seasonal igapó'-forests of central Amazonian blackwater rivers and their terrestrial arthropod fauna. In: Sioli H (ed) The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin. Junk, Dordrecht, pp 245–268CrossRefGoogle Scholar
  4. Adis J (1992) Überlebensstrategien terrestrischer Invertebraten in Überschwemmungswäldern Zentralamazoniens. Verh naturwiss, Ver Hamburg 33:21–114Google Scholar
  5. Adis J (1997) Estratégias de sobrevivência de invertebrados terrestres em florestas inundáveis da Amazônia Central: uma reposta à inundação de longo período. Acta Amaz 27:43–54CrossRefGoogle Scholar
  6. Adis J, Junk WJ (2002) Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshw Biol 47:711–731CrossRefGoogle Scholar
  7. Adis J, Mahnert V (1985) On the natural history and ecology of Pseudoscorpiones (Arachnida) fron na Amazonian black water inundation forest. Amazoniana 9(3):297–314Google Scholar
  8. Adis J, Mahnert V (1990) Vertical distribution and abundance of Pseudoscorpion species (Arachnida) in the soil of a Neotropical secondary forest during the dry and the rainy season. Acta Zool 190:11–16Google Scholar
  9. Adis J, Mahnert V (1993) Vertical distribution and abundance of Pseudoscorpions (Arachnida) in the soil two different Neotropical primary forest during the dry and rainy seasons. Mem Queensl Mus 33(2):431–440Google Scholar
  10. Adis J, Messner B (1997) Adaptations to life under water: Tiger beetles and millipedes. In: Junk WJ (ed) The Central Amazon floodplain, 318-330. Ecology of a pulsing system. Ecological Studies 126, Springer, BerlinGoogle Scholar
  11. Adis J, Schubart HOR (1984) Ecological research on arthropods in central Amazonian forest ecosystems with recommendations for study procedures. In: Cooley JH, Golley FB (eds) Trends in ecological research for the 1980s. NATO Conference Series, Series I: Ecology. Plenum Press, New York/London, pp 11–144Google Scholar
  12. Adis J, Lubin YD, Montgomery GG (1984) Arthropods from the canopy inundated and terra firme forests near Manaus, Brazil, with critical considerations on the pyrethrum-fogging technique. Stud Neotropical Fauna Environ 19(4):223–236CrossRefGoogle Scholar
  13. Adis J, Mahnert V, Morais JW, Rodrigues JMG (1988) Adaptation of an Amazonian Pseudoscorpion (Arachnida) from Dryland Forests to Inundation Forests. Ecology 69 (1):287–291CrossRefGoogle Scholar
  14. Adis J, Messner B, Hirschel K, Ribeiro MO, Paarmann W (1993) Zum Tauchvermogen eines Sandlaufkáfers (Coleoptera: Carabidae: Cicindelinae) im Überschwemmungsgebiet des Amazonas bei Manaus, Brasilien. Verh. Wesid. Entom. Tag 1992, Lõbbecke-Museum, Düsseldorf 51–62Google Scholar
  15. Aguiar NO (2000) Diversidade e História natural de Pseudoscorpiões (Arachnida), em floresta Primária de terra firme, no alto Rio Urucu, Coari, Amazoniaas. Tese de Doutorado, Manaus, INPA/FUA. p 225Google Scholar
  16. Aguiar NO, BÜhrnheim PF (1998) Ppseudoscorpions (Arachnida) of the Ilha de Maracá. pp. 381–389. In: Mlliken W, Ratter J (ed). Maracá. The Biodiversity and Environment of an Amazoniaian Rainforest. Jon Wiley & sons ltd, EnglandGoogle Scholar
  17. Aguiar NO, Bührnheim PF (2003) Pseudoscorpiões (Arachnida) da vegetação de sub-bosque da floresta primária tropical de terra firme (Coari, Amazoniaas, Brasil). Acta Amazon 33(3):515–526CrossRefGoogle Scholar
  18. Amorim MA, Adis J, Paarmann W (1997a) Life cycie adaptations of a diurnal tiger beetle (Coleoptera, Carabidae, Cicindelinae) to conditions on Central Amazonian floodplains. In: Ulrich H (ed) Tropical Biodiversity and Systematics, pp. 233–239. Proceedings Int. Symp. on Biodiversity and Systematics in Tropical Ecosystems, Bonn, 1994. Zoologisches Forschungsinstitut und Museum Koenig. pp 357Google Scholar
  19. Amorim MA, Adis J, Paarmann W (1997b) Ecology and adaptations of the tiger beetle Pentacomia egrégia (Chaudoir) (Cicindelinae: Carabidae) to Central Amazonian floodplains. Ecotropica 3(2):71–82Google Scholar
  20. Arrieira RL, Schwind LTF, Joko CY, Alves GM, Velho LFM, Lansac-Tôha FA (2016) Relationships between environmental conditions and the morphological variability of planktonic testate amoeba in four neotropical floodplains. Eur J Protistol 56:180–190. CrossRefPubMedGoogle Scholar
  21. Ayres JM (1995) As Matas de Várzea do Mamirauá. MCT-CNPq-Sociedade Civil Mamirauá, Rio de Janeiro 3–36Google Scholar
  22. Battirola LD, Marques MI, Adis J (2006). The importance of organic material for arthropods on Attalea phalerata (Arecaceae) in the Pantanal of Mato Grosso, Brazil. What’s up? ICAN, 12:1–3Google Scholar
  23. Beck L (1967) Beiträge zur Kenntnis der neotropischen Oribatidenfauna. 5. Archegozetes (Arach., Acari). Senckenb boil 48(5–6):407–414Google Scholar
  24. Beck L (1968) Zum jahreszeitlichen Massenwechsel zweier Oribatidenarten (Acari) im neotropischen Überschwemmungswald. Verhandlungen der Deutschen Zoologischen Gesellschaft in Innsbruck 535–540Google Scholar
  25. Beck L (1969) Zum jahreszeitlichen Massenwechsel zweier Oribatidenarten (Acari) im neotropischen Überschwemmungswald. Verh Dtsch Zool Ges (Innsbruck 1968):535–540Google Scholar
  26. Beck L (1971) Bodenzoologische Gliederung und Charakterisierung des amazonischen Regenwaldes Amazoniana 3(1):69–132Google Scholar
  27. Beck L (1972) Der EinfluB der jahresperiodischen Überflutungen auf den Massenwechsel der Bodenarthropoden im zentralamazonischen Regenwaldgebiet. Pedobiologia 12:133–148Google Scholar
  28. Benchimol M, Peres CA (2015) Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia. PLoS One 10:e0129818CrossRefGoogle Scholar
  29. Besch W (1969) South American Arachnida. In: Fittkau EJ, Lilies J, Klinge H, Schwabe GH, Sioli H (eds) Biogeography and ecology in South America. Junk, The Hague. pp 723–740Google Scholar
  30. Bonaldo AB, Carvalho LS, Pinto-da-Rocha R, Tourinho A, Miglio LT, Candiani DF, Lo-Man-Hung NF, Abrahim N, BVB R, Brescovit AD, Saturnino R, Bastos NC, Dias SC, Silva BJF, Pereira-Filho JMB, Rheims CA, Lucas SM, Polotow D, Ruiz G, Indicatti RP (2009) Inventário e história natural dos aracnídeos da Floresta Nacional de Caxiuanã. In: PLB L (ed) Caxiuanã: Desafios para a conservação de uma Floresta Nacional na Amazônia. Museu Paraense Emílio Goeldi, Belém, pp 577–621Google Scholar
  31. Bonecker CC, Simões NR, Minte-Vera CV, Lansac-Tôha FA, Velho LFM, Agostinho AA (2013) Temporal changes in zooplankton species diversity in response to environmental changes in alluvial valley. Limnologica 43:114–121CrossRefGoogle Scholar
  32. Borges SH, Brescovit AD (1996) Inventário preliminar da aracnofauna (Araneae) de duas localidades na Amazônia Ocidental. Boletim do Museu Paraense Emílio Goeldi, série zoológica 12:9–21Google Scholar
  33. Botero-Trujillo R, Flórez E (2017) Two new ricinuleid species from Ecuador and Colombia belonging to the peckorum species-group of Cryptocellus Westwood (Arachnida, Ricinulei). Zootaxa 4286(4):483–498. CrossRefGoogle Scholar
  34. Brescovit AD, Bonaldo AB, Bertani R, Rheims CA (2003) Araneae. In: Adis J (ed) Amazonian Arachnida and Myriapoda. Pensoft Publishers, Sofia/Moscow, pp 303–343Google Scholar
  35. Cardoso P, Arnedo MA, Triantis KA, Borges PAV (2010) Drivers of diversity in Macaronesian spiders and the role of species extinctions. J Biogeogr 37:1034–1046CrossRefGoogle Scholar
  36. Castilho ACC, Marques MI, Adis J, Brescovit AD (2005) Distribuição sazonal e vertical de Araneae em área com predomínio de Attalea phalerata Mart. (Arecaceae), no Pantanal de Poconé, Mato Grosso, Brasil. Amazoniana, 18:215–239Google Scholar
  37. Chapin FS, Bret-Harte MS, Hobbie SR, Zhong HL (1996) Plant functional types as predictors of transient responses of arctic vegetation to global change. J Veg Sci 7:347–358CrossRefGoogle Scholar
  38. Chobot K, Řezáč M, Boháč J (2005) Epigeic groups of invertebrates and its indicative possibilities. In: Vačkář D (ed) Indicators of biodiversity changes. Academia, Praha, pp 239–248Google Scholar
  39. Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592CrossRefGoogle Scholar
  40. Cokendolpher JC, Reddell JR (2000) New and rare Schizomida (Arachnida: Hubbardiidae) from South America. Amazoniana 16(1/2):187–212Google Scholar
  41. Condé B (1993) Description du mâle de deux espèces de Palpigrades. Rev Suisse Zool 100:279–287CrossRefGoogle Scholar
  42. Cook OF (1899) Hubbardia, a new genus of Pedipalpi. Proc Entomol Soc Wash 4:249–261Google Scholar
  43. Cooke JAL (1967) Observations on the biology of Ricinulei (Arachnida) with descriptions of two new species of Cryptocellus. J Zool 151:31–42. CrossRefGoogle Scholar
  44. Diaz S (1995) Elevated CO2 responsiveness, interactions at the community level and plant functional types. J Biogeogr 22:289–295CrossRefGoogle Scholar
  45. Erwin TL (1983) Beetles and other insects of the tropical rainforest canopies at Manaus, Brazil, sampled with insecticidal fogging. In: Suttoj SL, Whitmore TC, Chadwick AC (eds) Tropical rain Forest: ecology and management. Special Pub. No. 2 of the British Ecological Society. Blackwell Scientific Publications, Oxford, pp 59–75Google Scholar
  46. Erwin TL, Adis J (1982) Amazonian inundation forests: their role as short-term refuges and generators of species richness and taxon pulses. In: International symposium of the association for tropical biology, 5. 1979, Caracas. Proceedings, vol 5. Columbia University Press, New York, pp 358–371Google Scholar
  47. Ferreira LV, Parolin P (2011) Effects of flooding duration on plant demography in a black-water floodplain forest in Central Amazonia. Invited paper. Pesquisas Botânica 62:323–332Google Scholar
  48. Flores BM, Holmgren M, Xu C, van Nes EH, Jakovac CC, Mesquita RCG, Scheffer M (2017) Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc Natl Acad Sci U S A 114(17):4442–4446. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Franklin E (1994) Ecologia de oribatídeos (Acari: Oribatida) em florestas inundáveis da Amazônia Central. Tese de doutorado, Inpa/Universidade do Amazonas, Manaus 266Google Scholar
  50. Franklin EN, Woas S, Schubart HOR, Adis J (1980) Ácaros oribatídeos (Acari:Oribatida) arborícolas de duas florestas inundáveis da Amazônia Central. Rev Bras Biol 58(2):317–335Google Scholar
  51. Franklin EN, Schubart HOR, Adis JU (1996) Ácaros (Acari: Oribatida) edáficos de duas florestas inundáveis da Amazônia Central: distribuição vertical, abundância e recolonização do solo após a inundação. Rev Bras Biol 57(3):501–520Google Scholar
  52. Franklin EN, Adis J, Woas S (1997) The Oribatid Mites. In: Junk WJ (ed) Central Amazonian river floodplains: ecology of a pulsing system. Springer-Verlag, Berlin/Heidelberg, pp 331–349CrossRefGoogle Scholar
  53. Franklin EN, Woas S, Schubart HOR, Adis J (1998) Ácaros Oribatídeos (Acari: Oribatida) arborícolas de duas florestas inundáveis da Amazônia Central. Rev Bras Biol 58(2):317–335Google Scholar
  54. Franklin EΝ, Guimarães RL, Adis J, Schubart HOR (2001) Resistência á submersão de ácaros (Acari: Oibatida) terrestres de florestas inundáveis e de terra firme na Amazônia central em condições experimentais de laboratório. Acta Amaz 31(2):285. CrossRefGoogle Scholar
  55. Franklin E, Hayek T, Fagundes E, Silva L (2004) Oribatid mite (Acari: Oribatida) contribution to decomposition dynamic of leaf litter in primary forest, second growth, and polyculture in the Central Amazon. Braz J Biol 64(1):59–72. CrossRefPubMedGoogle Scholar
  56. Franklin E, Santos EMR, Albuquerque MIC (2006) Diversity and distribution of oribatid mites (Acari: Oribatida) in a lowland rain forest in Peru and in several environments of the Brazilians states of Amazonas, Rondônia, Roraima and Pará. Braz J Biol 66(4):999–1020. CrossRefPubMedGoogle Scholar
  57. Friebe B, Adis J (1983) Entwicklungszyklen von Opiliones (Arachnida) im Schwarzwasser-Uberschwemmungswald (Igapo) des Rio Tarumã Mirim (Zentralamazonien, Brasilien). Amazoniana 8:101–110Google Scholar
  58. Furch K, Junk WJ (1997) Physicochemical conditions in the floodplains. In: Junk WJ (ed) The Central Amazon Floodplain: Ecology of a Pulsing System. Springer-Verlag, Berlin, 69–108.Google Scholar
  59. Gervais PM (1843) Les principaux résultats d’un travail sur la famille des Scorpions. C R Hebd Seances Acad Sci. 5(7):129–131Google Scholar
  60. Hammen van der L (1982) Comparative studies in Chelicerata II. Epimerata (Palpigradi and Actinotrichida). Zool Verhand 196:1–70Google Scholar
  61. Harvey MS (2002) The neglected cousins: what do we know about the smaller arachnid orders? J Arachnol 30:357–372.[0357:TNCWDW]2.0.CO;2 CrossRefGoogle Scholar
  62. Harvey MS (2003) Catalogue of the smaller arachnid orders of the world: Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing, p 400Google Scholar
  63. Harvey MS (2013) Whip Spiders of the World, version 1.0. Western Australian Museum, Perth. Accessed 28 April 2017, online at
  64. Hayek T (2000) Ácaros do solo (Acari: Oribatida): Diversidade, abundância e biomassa na decomposição de serapilheira em parcelas de floresta primária, capoeiras e policultivo da Amazônia Central. MSc. Thesis. Manaus, INPA, 93Google Scholar
  65. Hofer H (1990) The spider community (Araneae) of a Central Amazonian blackwater inundation forest (igapó). Acta Zool Fenn 190:173–179Google Scholar
  66. Höfer H (1997) The spider communities. In: Junk W (ed) The central Amazonian river floodplains. Ecology of a pulsing system. Springer, Berlin, pp 570–576Google Scholar
  67. Höfer H, Brescovit AD (1996) On the genus Xyccarph in Central Amazonia (Araneae: Oonopidae). Bull Br Arachnol Soc 10:149–155Google Scholar
  68. Höfer H, Brescovit AD, Gasnier T (1994a) The wandering spiders of the genus Ctenus (Ctenidae, Araneae) of Reserva Ducke, a rainforest reserve in Central Amazonia. Andrias 13:81–98Google Scholar
  69. Höfer H, Brescovit AD, Adis J, Paarmann W (1994b) The spider fauna of Neotropical tree canopies in Central Amazonia: first results. Stud Neotropical Fauna Environ 29(1):23–32CrossRefGoogle Scholar
  70. Irion G, Junk WJ, Mello JASN (1997) The large central Amazonian river floodplains near and geomorphological aspects. In: Junk WJ (ed) The Central Amazon Floodplain: Ecology of a Pulsing System. Springer-Verlag, Berlin, 23–46Google Scholar
  71. Irmler U (1981) Überlebensstrategien von Tieren im saisonal überfluteten amazonischen Überschwemmungswald. Zool Anzeiger, 206(1/2): 26–38Google Scholar
  72. Irmler U (1985) Temperature dependent generation cycle for the cicindelid beetle Pentacomia egregia Chaud. (Coleoptera, Carabidae, Cicindelinae) of the Amazon valley. Amazoniana 9:431–439Google Scholar
  73. Junk WJ (1983) As águas da região Amazônica. In: Salati E, Schubart H, Junk WJ, Oliveira AR (eds). Amazônia: Desenvolvimento, Integração e Ecologia. Ed Brasiliense/CNPq, São Paulo, 45–100Google Scholar
  74. Junk WJ (1989) Flood tolerance and tree distribution in central Amazonia. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical Forest Botanical Dynamics. Speciation and Diversity. Academic Press, London, p 47–64Google Scholar
  75. Junk WJ (2000) The Central Amazon floodplain: ecology of a pulsing system. Springer, Berlin, p 525Google Scholar
  76. Junk WJ, Furch K (1985) The physical and chemical properties of Amazonian waters and their relationships with the biota. In: Prance GT, Lovejoy TE (eds) Key environments: Amazonia. Pergamon Press, New York, pp 3–17Google Scholar
  77. Kropf C (1995) Pseudanapis hoeferi, n. sp. from central Amazonia, Brazil (Araneae, Anapidae). Bull Br Arachnol Soc 10:19–22Google Scholar
  78. Kury AB (1995) A review of Huralvioides (Opiliones, Gonyleptidae, Pachylinae). Amazoniana 13:315–323Google Scholar
  79. Kury AB (2003) Annotated catalogue of the Laniatores of the new world (Arachnida, Opiliones). Rev Ibéric Aracnol 1:1–337Google Scholar
  80. Kury AB (2010) Opilionological record – a chronicle of harvestman taxonomy. Part 1: 1758–1804. J Arachnol 38(3):521–529CrossRefGoogle Scholar
  81. Kury AB, Pinto-Da-Rocha R (2002) Opiliones. In: Adis J (ed) Amazonian Arachnida and Myriapoda. Pensoft, Sofia, p 590Google Scholar
  82. Lourenço WR (1988) Synopsis de la faune scorpionique de la région de Manaus, Etat d'Amazonas, Brésil, avec description de deux nouvelles espèces. Amazoniana 10(3):327–337Google Scholar
  83. Lourenço WR (1997) A propos de deux nouvelles espèces de Tityus Koch du Brésil (Scorpiones, Buthidae). Rev Arachnol, 12(5):53–59.Google Scholar
  84. Lourenço WR (2002) Scorpiones. In: Adis J (ed) Amazonian Arachnida and Myriapoda: identification keys to all classes, orders, families, some genera and lists of known terrestrial species. Pensoft Publisher, MoscowGoogle Scholar
  85. Lourenço WR (2005) Scorpion diversity and endemism in the Rio Negro region of Brazilian Amazonia, with the description of two new species of Tityus C. L. Koch (Scorpiones, Buthidae). Amazoniana, 18(3/4):203–213Google Scholar
  86. Lourenço WR, Cuellar O (1999) A new all-female scorpion and the first probable case of arrhenotoky in scorpions. J Arachnol 27:149–153Google Scholar
  87. Lourenço WR, Eickstedt VR (2003) Escorpiões de Importância Médica. In: Cardoso JLC, França FOS, Wen FH, Málaque CMS, Haddad V (eds) Animais Peçonhentos no Brasil: Biologia, Clínica e Terapêutica dos Acidentes. Sarvier, Fapesp, São PauloGoogle Scholar
  88. Lourenço WR, Francke OF (1986) A new species of Chactopsis from Brazil (Scorpiones, Chactidae). Amazoniana 9(4):549–558Google Scholar
  89. Lourenço WR, Pézier A (2002) Addition to the scorpion fauna of the Manaus region (Brazil), with a description of two species of Tityus from the canopy. Amazoniana, 17(1):177–186Google Scholar
  90. Lourenço WR, Pinto-da-Rocha R (2000) Two new species of Tityus from Brazilian Amazonia (Scorpiones, Buthidae). Revue Arachnologique 13(13):187–195Google Scholar
  91. Lourenço WR, Adis J, Araújo JS (2005) A new synopsis of the scorpion fauna of the Manaus region in Brazilian Amazonia, with special reference to an inundation forest at the Tarumã Mirím river. Amazoniana 18(3/4):241–249Google Scholar
  92. Maelfai TJP (1996) Spiders as bioindicators. In: van Straalen NM, Krivolutsky DM (eds) Bioindicator systems for soil pollution. Kluwer Academic Publishers, Dordrecht, pp 165–178CrossRefGoogle Scholar
  93. Maelfai TJP, Baer TL (1988) Les araignées sont-elles de bons indicateurs écologiques? Bull Soc Scient Bretagne 59:155–160Google Scholar
  94. Mahnert V (1979) Pseudoskorpione (Arachnida) aus dem Amazonas-Gebiet (Brasilien). Rev Suisse Zool 86(3):719–810CrossRefGoogle Scholar
  95. Mahnert V (1985) Pseudoscorpions (Aracnhida) from the lower Amazon region. Revta bras Ent 29(1):75–80Google Scholar
  96. Mahnert V, Adis J (1985) On the occurrence and habitat of Pseudoscorpions (Arachnida) from Amazoniaian forest of Brazil. Studi Neotropical Fauna Environ 20(4):211–215CrossRefGoogle Scholar
  97. Mahnert V, Adis J (2002) Pseudoscorpiones. In: Adis J (ed) Amazonian Arachnida and Miriapoda. Pensoft Publishers, Sofia/MoscowGoogle Scholar
  98. Marques MI, Santos GB, Battirola LD, Tissiani ASO (2009) Entomofauna associada à matéria orgânica em bainhas foliares de Attalea phalerata Mart. (Arecaceae) na região norte do Pantanal de Mato Grosso. Acta Biol Parana 38:93–112Google Scholar
  99. Martius C, Höfer H, Verhaagh M, Adis J, Mahnert V (1994) Terrestrial arthropods colonizing an abandoned termite nest in a floodplain forest of the Amazon river during the flood. Andrias 13:17–22Google Scholar
  100. Mayoral JG (2015) Clase Arachnida. Orden Palpigradi Revista electronica IDE@ – SEA, 10:1–9Google Scholar
  101. Mertes LAK, Dunne T, Martinelli LA (1996) Channel-floodplain geomorphology along the Solimões-Amazon River, Brazil. Geol Soc Am Bull 108:1089–1107CrossRefGoogle Scholar
  102. Morais JW (1985) Abundância e distribuição vertical de Arthropoda do solo numa floresta primária não inundada. Dissertação de Mestrado, Manaus, INPA/FUA, 92pGoogle Scholar
  103. Morais JW, Adis J, Mahnert V, Berti-Filho E (1997) Abundance and phenology of pseudoscorpiones (Arachnida) from a mixed water inundation forest in central Amazonia, brazil. Revue Suisse Zool 104(3):475–483 Google Scholar
  104. Muchmore WB (1975) Two Miratemnid Pseudoscorpions from the western hemisphere (Pseudoscorpionida, Miratemnidae). Southwest Nat 20(2):231–239CrossRefGoogle Scholar
  105. Norton RA, Behan–Pelletier VM (2009) Suborder Oribatida. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 430–564Google Scholar
  106. Oliveira AR, Argolo PS, De GJ, Norton RA, Schatz H (2017) A checklist of the oribatid mite species (Acari: Oribatida) of Brazil. Zootaxa 4245(1):1–89. CrossRefPubMedGoogle Scholar
  107. Paarmann W, Irmler U, Adis J (1982) Pentacomia egregia Chaud. (Carabidae, Cicindelinae), an univoltine species in the Amazonian inundation forest. Coleopts Bull, 36(2):183–188Google Scholar
  108. Paoletti MG (1999) Using bioindicators based on biodiversity to assess landscape sustainability. Agric Ecosyst Environ 74(1–3):1–18Google Scholar
  109. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758CrossRefGoogle Scholar
  110. Pinto-da-Rocha R, Kury AB (2003) Third species of Guasiniidae (Opiliones, Laniatores) with comments on familial relationships. J Arachnol 31(3):394–399CrossRefGoogle Scholar
  111. Platnick NI, Hofer H (1990) Systematics and ecology of ground spiders (Araneae, Gnaphosidae) from central Amazonian inundation forests. Am Mus Novit 2971:1–16Google Scholar
  112. Pocock RI (1897) Descriptions of some new species of scorpions of the genus Tityus, with notes upon some forms allied to T. americanus (Linn.). Ann Mag Nat Hist 19(6):510–521CrossRefGoogle Scholar
  113. Prendini L (2011a) Order Palpigradi Thorell, 1888. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness, vol 3148. Zootaxa, New Zealand, p 121Google Scholar
  114. Prendini L (2011b) Order Solifugae Sundevall, 1833. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness, vol 3148. Zootaxa, New Zealand, p 118Google Scholar
  115. Raub F, Höfer H, Scheuermann L, Brandl R (2014) The conservation value of secondary forests in the southern Brazilian Mata Atlântica from a spider perspective. J Arachnol 42:52–73CrossRefGoogle Scholar
  116. Reddell JR, Cokendolpher JC (1995) Catalogue, bibliography, and generic revision of the order Schizomida (Arachnida). Texas Memorial Museum Speleol Monogr 4:1–170Google Scholar
  117. Reddell JR, Cokendolpher J (2002) Schizomida. In: Adis J (ed) Amazonian Arachnida and Myriapoda – keys for the identification to classes, orders, families, some genera, and lists of known species. Pensoft, Sofia, pp 387–398 590pGoogle Scholar
  118. Rego FNAA, Venticinque EM, Brescovit AD, Rheims CA, Albernaz ALKM (2009) A contribution to the knowledge of the spider fauna (Arachnida: Araneae) of the floodplain forests of the main Amazon River channel. Rev Ibé Aracnol 97:85–96Google Scholar
  119. Resende AF, Nelson BW, Flores BM, Almeida DR (2014) Fire damage in seasonally flooded and upland forests of the Central Amazon. Biotropica 46:643–646CrossRefGoogle Scholar
  120. Ribeiro MOA, Fonseca CRV, Foronda EH (1996) Bionomi a de Megacephaia sobrina punctata Laporte 1835 e inventário das espécies do gênero Megacephaia Latreille (Coleoptera: Cicindelidae) em áreas alagáveis na Amazônia Central. Rev UA Série: Ciências Biológicas 1(1):31–54Google Scholar
  121. Rocha LS (2002) Solifugae. In: Adis J (ed) Amazonian Arachnida and Myriapoda. Pensoft Publishers, SofiaGoogle Scholar
  122. Rocha LS, Cancello EM (2002) South American Solifugae: new records, occurrence in humid forests and concurrence with termites. News Lett Br Arachnol Soc 93:4–5Google Scholar
  123. Rowland JM (1975) Classification, phylogeny and zoogeography of the American arachnids of the order Schizomida. PhD dissertation. Texas Tech University, LubbockGoogle Scholar
  124. Silva D (1996) Species composition and community structure of Peruvian rainforest spiders: a case study from a seasonally inundated forest along the Samiria river. Revue Suisse de Zoologie Hors Série 2:597–610Google Scholar
  125. Sioli H (1984) The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. In: Sioli H (ed) Amazon: Limnology and Landscape Ecology of a Mighty River and its Basin. Dr. W. Junk Publishers, Dordrecht, 127–165CrossRefGoogle Scholar
  126. Smrž J, Kováč Ĺ, Mikeš J, Lukešová A (2013) Microwhip scorpions (Palpigradi) feed on heterotrophic cyanobacteria in slovak caves – a curiosity among arachnida. PLoS One 8(10):e75989. CrossRefPubMedPubMedCentralGoogle Scholar
  127. Souza MFVR, Ferreira RL (2010) Eukoenenia (Palpigradi: Eukoeneniidae) in Brazilian caves with the first troglobiotic palpigrade from South America. J Arachnol 38:415–424. CrossRefGoogle Scholar
  128. Souza MFVR, Ferreira RL (2013) Two new species of the enigmatic Leptokoenenia (Eukoeneniidae: Palpigradi) from Brazil: first record of the genus outside intertidal environments. PLoS ONE 8(11):e77840CrossRefGoogle Scholar
  129. Tilman D, Reich PB, Knops J, Wedin D, Mielke T (2001) Diversity and productivity in a long-term grassland experiment. Science 294:843–845CrossRefGoogle Scholar
  130. Tizo-Pedroso, Del-Claro K (2007) Natural history and social behavior in Neotropical Pseudoscorpions. In: Encyclopedia of life support systems (UNESCOEOLSS, 2007). UNESCO: Eolss Publishers, Oxford, pp 1–12Google Scholar
  131. Tourinho AL, Lo Man-Hung NF, Bonaldo AB (2010) A new species of Ricinulei of the genus Cryptocellus Westwood (Arachnida) from northern Brazil. Zootaxa 2684:63–68Google Scholar
  132. Uehara-Prado M, Fernandes JO, Bello AM, Machado G, Santos AJ, Vaz-de-Mello FZ, Freitas AVL (2009) Selecting terrestrial arthropods as indicators of small-scale disturbance: a first approach in the Brazilian Atlantic Forest. Biol Conserv 142:1220–1228CrossRefGoogle Scholar
  133. Valdecasas AG, Camacho AI (2003) Conservation to the rescue of taxonomy. Biodivers Conserv 12:1113–1117CrossRefGoogle Scholar
  134. Vieira RS, Höfer H (1994) Prey spectrum of two army ant species in Central Amazonia, with special attention on their effect on spider populations. Andrias 13:189–198Google Scholar
  135. Voigt W, Perner J, Jones TH (2007) Using functional groups to investigate community response to environmental changes: two grassland case studies. Glob Chang Biol 13:1710–1721CrossRefGoogle Scholar
  136. Ward JV, Tockner K (2001) Biodiversity: toward a unifying theme for river ecology. Freshw Biol 46:807–819CrossRefGoogle Scholar
  137. Werner F (1939) Neu-Eingänge von Skorpionen im Zoologischen Museum in Hamburg. II. Teil. Festschrift zum 60. Geburstage von Professor Dr. Embrik Strand 5:351–360Google Scholar
  138. Weygoldt P (1969) Biology of Pseudoscorpions. Harvard University Press, Cambridge, 145pGoogle Scholar
  139. Weygoldt P (2000) Biology of whip spiders (Chelicerata: Amblypygi): their biology, morphology and systematics. Apollo Books, StenstrupGoogle Scholar
  140. Woas S (2002) Acari: Oribatida. In: Adis J (ed) Amazonian Arachnida and Myriapoda. Pensoft, Sofia/Moscow, pp 21–291Google Scholar
  141. World Spider Catalog (2017) World Spider Catalog. Natural History Museum Bern, online at, version 17.5, Accessed on 01.20.2017

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Lidianne Salvatierra
    • 1
  1. 1.State University of Roraima, Postgraduate Program in EducationBoa VistaBrazil

Personalised recommendations