Mercury in Black-Waters of the Amazon

  • Daniele Kasper
  • Bruce Rider Forsberg
  • Helena do Amaral Kehrig
  • João Henrique Fernandes Amaral
  • Wanderley Rodrigues Bastos
  • Olaf Malm


Negro river, the largest black-water tributary of the Amazon, has soils naturally rich in mercury (Hg) that is leached to the aquatic ecosystem by pedologic processes. The flooded areas of its basin are conducive to mercury methylation. Therefore, highest mercury concentrations have been observed in its black-water and biota even in regions without anthropogenic impacts. Here we show an integrated analysis of total mercury (THg) and methylmercury (MeHg) data of environmental samples collected along the Negro basin. THg concentrations in whole water of Negro river and its tributaries did not vary between two hydrological seasons, but in suspended matter were highest during high-water season showing that mercury was more associated to particulate form during this time. During high-water season, waters of Negro river and its tributaries showed highest MeHg concentrations, were more acid, and less oxygenated. The %MeHg in relation to THg of plankton from floodplain lakes of Negro basin was in the same range or higher than the values observed in plankton from natural lakes or reservoirs. Therefore, some processes can occur specially in the environmental conditions of Negro basin such as highest and fastest MeHg absorption by plankton and greater availability of MeHg to bioaccumulation. We conclude that probably MeHg is formed mainly in the flooded area, where dissolved oxygen in depleted and the microbial activity of anoxic organisms is increased. The Amazonian lakes are hot spots for MeHg absorption by planktonic communities and can have an important contribution to Hg concentrations of the basin by exporting large MeHg levels associated to these organisms. Along the food chain of the Negro basin, it was possible to observe the biomagnification of mercury from phytoplankton to dolphin, with increase of mercury concentrations around one order of magnitude from one trophic level to other. Amazon basins, including Negro, have been frightened by diverse land use that can change the mercury cycle and increase concentrations in aquatic systems.


Negro river Methylmercury Total mercury Biomagnification Methylation 



The authors are thankful for the financial support of CAPES, CNPq, FAPEAM, and FAPERJ and for the logistical support of INPA and UFRJ. We also thank the staff of Laboratório de Biogeoquímica Ambiental (UNIR) and Laboratório de Radioisótopos (UFRJ) for their help with mercury analyses.


  1. Akagi H, Malm O, Kinjo Y, Harada M, Branches FJP, Pfeiffer WC, Kato H (1995) Methylmercury pollution in the Amazon, Brazil. Sci Total Environ 175:85–95CrossRefGoogle Scholar
  2. Amorim MIM, Mergler D, Bahia MO, Dubeau H, Miranda D, Lebel J, Burbano RR, Lucotte M (2000) Cytogenetic damage related to low levels of methylmercury contamination in the Brazilian Amazon. An Acad Bras Cienc 72:497–507CrossRefGoogle Scholar
  3. Anderson MR, Scruton DA, Williams UP, Payne JF (1995) Mercury in fish in the Smallwood reservoir, Labrador, twenty one years after impoundment. Water Air Soil Pollut 80:927–930CrossRefGoogle Scholar
  4. Arcagni M, Juncos R, Rizzo A, Pavlin M, Fajon V, Arribére MA, Horvat M, Guevara SR (2018) Species- and habitat-specific bioaccumulation of total mercury and methylmercury in the food web of a deep oligotrophic lake. Sci Total Environ 612:1311–1319CrossRefGoogle Scholar
  5. Azevedo-Silva CE, Almeida R, Carvalho DP, Ometto JPHB, Camargo PB, Dornele PR, Azeredo A, Bastos WR, Malm O, Torres JP (2016) Mercury biomagnification and the trophic structure of the ichthyofauna from a remote lake in the Brazilian Amazon. Environ Res 151:286–296CrossRefGoogle Scholar
  6. Barbosa AC, Souza J, Dórea JG, Jardim WJ, Fadini PS (2003) Mercury biomagnification in a tropical black water, Rio Negro, Brazil. Arch Environ Contam Toxicol 45:235–246CrossRefGoogle Scholar
  7. Bastos WR, Malm O, Pfeiffer WC, Cleary D (1998) Establishment and analytical quality control of laboratories for Hg determination in biological and geological samples in the Amazon, Brazil. Cienc Cult 50:255–260Google Scholar
  8. Bastos WR, Gomes JPO, Oliveira RC, Almeida R, Nascimento EL, Bernardi JVE, Lacerda LD, Silveira EG, Pfeiffer WC (2006) Mercury in the environment and riverside population in the Madeira river basin, Amazon, Brazil. Sci Total Environ 368:344–351CrossRefGoogle Scholar
  9. Bastos WR, Dórea JG, Bernardi JVE, Lauthartte LC, Mussy MH, Lacerda LD, Malm O (2015) Mercury in fish of the Madeira river (temporal and spatial assessment), Brazilian Amazon. Environ Res 140:191–197CrossRefGoogle Scholar
  10. Belger L, Forsberg BR (2006) Factors controlling hg levels in two predatory fish species in the negro river basin, Brazilian Amazon. Sci Total Environ 367:451–459CrossRefGoogle Scholar
  11. Boischio AAP, Henshel D (2000) Fish consumption, fish lore, and mercury pollution – risk communication for the Madeira river people. Environ Res 84:108–126CrossRefGoogle Scholar
  12. Branfireun BA, Heues A, Roulet NT (1996) The hydrology and methylHg dynamics of Precambrian shield headwater peatland. Water Resour Res 32:1785–1794CrossRefGoogle Scholar
  13. Brito BC, Forsberg BR, Kasper D, Amaral JHF, Vasconcelos MRR, Sousa OP, Cunha FAG, Bastos WR (2017) The influence of inundation and lake morphometry on the dynamics of mercury in the water and plankton in an Amazon floodplain lake. Hydrobiologia 790:35–48CrossRefGoogle Scholar
  14. Brouard D, Doyon JF (1991) Recherches exploratoires sur le mercure au complexe La Grande. Rapport du Groupe Environnement Shooner Inc. à la vice-présidence Environnement Hydro-Quábec, MontréalGoogle Scholar
  15. Canavan CM, Caldwell CA, Bloom NS (2000) Discharge of methylmercury-enriched hypolimnetic water from a stratified reservoir. Sci Total Environ 260:159–170CrossRefGoogle Scholar
  16. Carvalho DP (2016) Dinâmica e especiação de mercúrio em compartimentos abióticos na formação do reservatório da hidrelétrica de Santo Antônio do Rio Madeira, Rondônia. Ph.D. thesis. Universidade Federal do Rio de Janeiro, UFRJ, BrasilGoogle Scholar
  17. Compeau G, Bartha R (1985) Sulfate reducer bacteria: principal methylators of mercury in anoxic estuarine sediments. Appl Environ Microbiol 50:498–502PubMedPubMedCentralGoogle Scholar
  18. Cordeiro RC, Turcq B, Ribeiro MG, Lacerda LD, Capitâneo J, Silva AO, Sifeddine A, Turcq PM (2002) Forest fire indicators and mercury deposition in an intense land use change region in the Brazilian Amazon (Alta Floresta, MT). Sci Total Environ 293:247–256CrossRefGoogle Scholar
  19. Correia RRS, Miranda MR, Guimarães JRD (2012) Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: effect of different inhibitors. Environ Res 112:86–91CrossRefGoogle Scholar
  20. Dominique Y, Maury-Brachet R, Muresan B, Vigouroux R, Richard S, Cossa D, Mariotti A, Boudou A (2007) Biofilm and mercury availability as key factors for mercury accumulation in fish (Curimata cyprinoides) from a disturbed Amazonian freshwater system. Environ Toxicol Chem 26:45–52CrossRefGoogle Scholar
  21. Dorea JG, Barbosa AC, Silva GS (2006) Fish mercury bioaccumulation as a function of feeding behavior and hydrological cycles of the Rio Negro, Amazon. Comp Biochem Physiol 142:275–283Google Scholar
  22. Durrieu G, Maury-Brachet R, Boudou A (2005) Goldmining and mercury contamination of the piscivorous fish Hoplias aimara in French Guiana (Amazon basin). Ecotoxicol Environ Saf 60:315–323CrossRefGoogle Scholar
  23. EPA-Environmental Protection Agency (1998) Guidelines for neurotoxicity risk assessment. Federal Register 63, WashingtonGoogle Scholar
  24. EPA-Environmental Protection Agency (2001) EPA Method 1630. Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. United States Environmental Protection Agency, WashingtonGoogle Scholar
  25. EPA-Environmental Protection Agency (2002) EPA Method 1631, revision E. Mercury in water by oxidation, purge and trap, and Cold Vapor Atomic Fluorescence Spectrometry. United States Environmental Protection Agency, WashingtonGoogle Scholar
  26. Fadini PS, Jardim WF (2001) Is the negro river basin (Amazon) impacted naturally occurring mercury? Sci Total Environ 275:71–82CrossRefGoogle Scholar
  27. Farella N, Lucotte M, Davidson R, Daigle S (2006) Mercury release from deforested soils triggered by base cation enrichment. Sci Total Environ 368:19–29CrossRefGoogle Scholar
  28. Forsberg BR, Kasper D, Peleja JRP, Weisser SC, Marshall BG, Torres SS (2013) History of mercury contamination in Balbina Reservoir, Central Amazon, Brazil. 11th international conference on mercury as global pollutant, EdinburghGoogle Scholar
  29. Fréry N, Maury-Brachet R, Maillot E, Deheeger M, Mérona B, Boudou A (2001) Gold-mining activities and mercury contamination of native Amerindian communities in French Guiana: key role of fish in dietary uptake. Environ Health Perspect 109:449–456PubMedPubMedCentralGoogle Scholar
  30. Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, Johs A, Hurt RA, Bailey KL, Elias DA (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820CrossRefGoogle Scholar
  31. Guimarães JRD, Roulet M, Lucotte M, Mergler D (2000) Mercury methylation along a lake-forest transect in the Tapajós river floodplain, Brazilian Amazon: seasonal and vertical variations. Sci Total Environ 261:91–98CrossRefGoogle Scholar
  32. Huchabee JW, Elwood JW, Hildebrand SC (1979) Accumulation of mercury in freshwater biota. In: Nriagu JO (ed) The biogeochemistry of mercury in the environment. Elsevier, Amsterdam, pp 277–302Google Scholar
  33. Ikingura JR, Akagi H (2003) Total mercury and methylmercury in fish from hydroelectric reservoirs in Tanzânia. Sci Total Environ 304:355–368CrossRefGoogle Scholar
  34. Junk WJ (1993) Wetlands of tropical South America. In: Whigham DF, Dykyjová D, Hejny S (eds) Wetlands of the World I: inventory, ecology and management. Kluwer Academic Publisher, Dordrecht, pp 679–739CrossRefGoogle Scholar
  35. Kasper D, Palermo EFA, Branco CWC, Malm O (2012) Evidence of elevated mercury levels in carnivorous and omnivorous fishes downstream from an Amazon reservoir. Hydrobiologia 694:87–98CrossRefGoogle Scholar
  36. Kasper D, Forsberg BRF, Amaral JHF, Leitão RP, Py-Daniel SS, Bastos WR, Malm O (2014) Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil. Environ Sci Technol 48:1032–1040CrossRefGoogle Scholar
  37. Kasper D, Forsberg BRF, Almeida R, Bastos WR, Malm O (2015) Metodologias de coleta, preservação e armazenamento de amostras de água para análise de mercúrio – uma revisão. Quim Nova 38:410–418Google Scholar
  38. Kasper D, Forsberg BRF, Amaral JHF, Py-Daniel SS, Bastos WR, Malm O (2017) Methylmercury modulation in Amazon rivers linked to basin characteristics and seasonal flood-pulse. Environ Sci Technol 51:14182–14191CrossRefGoogle Scholar
  39. Kehrig HA, Malm O (1999) Methylmercury in fish as a tool for understanding the Amazon Hg contamination. Appl Organomet Chem 13:689–696CrossRefGoogle Scholar
  40. Kehrig HA, Malm O, Akagi H, Guimarães JRD, Torres JPM (1998) Methylmercury in fish and hair samples from the Balbina reservoir, Brazilian Amazon. Environ Res 77:84–90CrossRefGoogle Scholar
  41. Kehrig HA, Palermo EFA, Seixas TG, Santos HSB, Malm O, Akagi H (2009) Methyl and total mercury found in two man-made Amazonian reservoirs. J Braz Chem Soc 20:1142–1152CrossRefGoogle Scholar
  42. Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72:7919–7921CrossRefGoogle Scholar
  43. Krabbenhoft DP, Sunderland EM (2013) Global change and mercury. Science 341:1457–1458CrossRefGoogle Scholar
  44. Kwon SY, McIntyre PB, Flecker AS, Campbell LM (2012) Mercury biomagnification in the food web of a neotropical stream. Sci Total Environ 417-418:92–97CrossRefGoogle Scholar
  45. Lacerda LD (2003) Updating global hg emissions from small-sale gold mining and assessing its environmental impacts. Environ Geol 43:208–314CrossRefGoogle Scholar
  46. Lebel J, Mergler D, Branches F, Lucotte M, Amorim M, Larribe F, Dolbec J (1998) Neurotoxic effects of low-level methylmercury contamination in the Amazonian basin. Environ Res 79:20–32CrossRefGoogle Scholar
  47. Lechler PJ, Miller JR, Lacerda LD, Vinson D, Bozongo JC, Lyons WB, Warwick JJ (2000) Elevated mercury concentrations in soils sediments, water, and fish of the Madeira River basin, Brazilian Amazon: a function of natural enrichments? Sci Total Environ 260:87–96CrossRefGoogle Scholar
  48. Malm O, Pfeiffer WC, Souza CMM, Reuther R (1990) Mercury pollution due to gold mining in the Madeira river basin, Brazil. Ambio 19:11–15Google Scholar
  49. Malm O, Castro MB, Bastos WR, Branches FJPB, Guimarães JRD, Zuffo CE, Pfeiffer WC (1995) An assessment of hg pollution in different goldmining areas, Amazon Brazil. Sci Total Environ 175:127–140CrossRefGoogle Scholar
  50. Mason RP, Benoit JM (1986) Organomercury compounds in the environment. In: Craig PJ (ed) Organometallic compounds in the environment. Longman, New York, pp 57–100Google Scholar
  51. Mauro JBN, Guimarães JRD, Melamed R (1999) Aguapé agrava contaminação por mercúrio. Ciência Hoje 25:68–72Google Scholar
  52. Maury-Brachet R, Durrieu G, Dominique Y, Boudou A (2006) Mercury distribution in fish organs and food regimes: significant relationships from twelve species collected in French Guiana (Amazonian basin). Sci Total Environ 368:262–270CrossRefGoogle Scholar
  53. Mol JH, Ramlal JS, Lietar C, Verloo M (2001) Mercury contamination in freshwater, estuarine, and marine fishes in relation to small-scale gold mining in Suriname, South America. Environ Res 86:183–197CrossRefGoogle Scholar
  54. Muresan B, Cossa D, Coquery M, Richard S (2008a) Mercury sources and transformations in a man-perturbed tidal estuary: the Sinnamary estuary, French Guiana. Geochim Cosmochim Acta 72:5416–5430CrossRefGoogle Scholar
  55. Muresan B, Cossa D, Richard S, Dominique Y (2008b) Monomethylmercury sources in a tropical artificial reservoir. Appl Geochem 23:1101–1126CrossRefGoogle Scholar
  56. Mussy MH (2017) Dinâmica das concentrações de Hg em peixes no antes e pós-enchimento da Usina hidrelétrica de Santo Antônio, Rio Madeira, Rondônia. Ph. D. thesis. Universidade Federal do Rio de Janeiro, UFRJ, Brasil (in progress)Google Scholar
  57. Olivero J, Solano B (1998) Mercury in environmental samples from a waterbody contaminated by gold mining in Colombia, South America. Sci Total Environ 217:83–89CrossRefGoogle Scholar
  58. Olivero-Verbel J, Johnson-Restrepo B, Mendoza-Marín C, Paz-Martinez R, Olivero-Verbel R (2004) Mercury in the aquatic environment of the village of Caimito at the Mojana region, north of Colombia. Water Air Soil Pollut 159:409–420CrossRefGoogle Scholar
  59. Padovani CR, Forsberg BR, Pimentel TP (1995) Contaminação mercurial em peixes do rio Madeira: Resultados e recomendações para consumo humano. Acta Amaz 25:127–136CrossRefGoogle Scholar
  60. Palermo EFA (2008) Acúmulo e transporte de mercúrio em reservatórios tropicais. Ph.D. thesis. Universidade Federal do Rio de Janeiro, UFRJ, BrasilGoogle Scholar
  61. Palermo EFA, Kasper D, Reis TS, Nogueira S, Branco CWC, Malm O (2004) Mercury level increase in fish tissues downstream the Tucuruí reservoir, Brazil. RMZ Mater Geoenviron 51:1292–1294Google Scholar
  62. Passos CJS, Silva DS, Lemire M, Fillion M, Guimarães JRD, Lucotte M, Mergler D (2008) Daily mercury intake in fish- eating populations in the Brazilian Amazon. J Expo Sci Environ Epidemiol 18:76–87CrossRefGoogle Scholar
  63. Paterson MJ, Rudd JWM, St. Louis V (1998) Increases in total and methylmercury in zooplankton following flooding of a peatland reservoir. Environ Sci Technol 32:3868–3874CrossRefGoogle Scholar
  64. Pfeiffer WC, Lacerda LD (1988) Mercury inputs into the Amazon region, Brazil. Environ Technol Lett 9:325–330CrossRefGoogle Scholar
  65. Plourde Y, Lucotte M, Pichet P (1997) Contribution of suspended particulate matter and zooplankton to MeHg contamination of the food chain in midnorthern Quebec (Canada) reservoirs. Can J Fish Aquat Sci 54:821–831CrossRefGoogle Scholar
  66. Porvari P (1995) Mercury levels of fish in Tucuruí hydroelectric reservoir and in river Mojú in Amazonia, in the state of Pará, Brazil. Sci Total Environ 175:109–117CrossRefGoogle Scholar
  67. Pouilly M, Pérez T, Rejas D, Guzman F, Crespo G, Duprey JL, Guimarães JRD (2012) Mercury bioaccumulation patterns in fish from the Iténez river basin, Bolivian Amazon. Ecotoxicol Environ Saf 83:8–15CrossRefGoogle Scholar
  68. Rogers DW, Dickman M, Han X (1995) Stories from old reservoirs: sediment hg and hg methylation in Ontario hydroelectric developments. Water Air Soil Pollut 80:829–839CrossRefGoogle Scholar
  69. Roulet M, Lucotte M, Aubin AS, Tran S, Rhéault I, Farella N, Silva EJ, Dezencourt J, Passos CJ, Soares GS, Guimarães JRD, Amorim DM (1998a) The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós river valley, Pará state, Brazil. Sci Total Environ 223:1–24CrossRefGoogle Scholar
  70. Roulet M, Lucotte M, Farella N, Serique G, Coelho H, Passos CJS, Silva EJ, Andrade PS, Mergler D, Guimarães JRD, Amorim M (1998b) Effects of recent human colonization on the presence of mercury in Amazonian ecosystems. Water Air Soil Pollut 112:297–313CrossRefGoogle Scholar
  71. Roulet M, Lucotte M, Guimarães JRD, Rheault I (2000) Methylmercury in water, seston, and epiphyton of an Amazonian river and its floodplain, Tapajós river, Brazil. Sci Total Environ 261:43–59CrossRefGoogle Scholar
  72. Roulet M, Lucotte M, Canuel R, Farella N, Goch YGF, Peleja JRP, Guimarães JRDG, Mergler D, Amorim M (2001) Spatio-temporal geochemistry of mercury in waters of the Tapajos and Amazon rivers, Brazil. Limnol Oceanogr 46:1141–1157CrossRefGoogle Scholar
  73. Sampaio da Silva D, Lucotte M, Paquet S, Davidson R (2009) Influence of ecological factors and of land use on mercury levels in fish in the Tapajós river basin, Amazon. Environ Res 109:432–446CrossRefGoogle Scholar
  74. Santos LSN, Muller RCS, Sarkis JES, Alves CN, Brabo ES, Santos EO, Bentes MHS (2000) Evaluation of total mercury concentrations in fish consumed in the municipality of Itaituba, Tapajós River basin, Pará, Brazil. Sci Total Environ 261:1–8CrossRefGoogle Scholar
  75. Schetagne R, Doyon JF, Fournier JJ (2000) Export of mercury downstream from reservoirs. Sci Total Environ 260:135–145CrossRefGoogle Scholar
  76. Silva-Forsberg MC, Forsberg BR, Zeidemann VK (1999) Mercury contamination in humans linked to river chemistry in the Amazon basin. Ambio 28:519–521Google Scholar
  77. Sorribas MV, Paiva RCD, Melack JM, Bravo JM, Jones C, Carvalho L, Beighley E, Forsberg B, Costa MH (2016) Projections of climate change effects on discharge and inundation in the Amazon basin. Clim Chang 136:555–570CrossRefGoogle Scholar
  78. Sousa OP (2015) O papel da matéria orgânica e do hidromorfismo na dinâmica do mercúrio em diferentes solos da Amazônia Central. MSc. thesis. Instituto Nacional de Pesquisas da Amazônia, INPA, BrasilGoogle Scholar
  79. Stewart AR, Saiki MK, Kuwabara JS, Alpers CN, Marvin-DiPasquale M, Krabbenhoft DP (2008) Influence of plankton mercury dynamics and trophic pathways on mercury concentrations of top predator fish of a mining-impacted reservoir. Can J Fish Aquat Sci 65:2351–2366CrossRefGoogle Scholar
  80. Svobodová Z, Dusek L, Hejtmánek M, Vykusová B, Smíd R (1999) Bioaccumulation of mercury in various fish species from Orlík and Kamýr reservoirs in the Czech Republic. Ecotoxicol Environ Saf 43:231–240CrossRefGoogle Scholar
  81. Tundisi JG, Bicudo CE, Matsumura-Tundisi T (1995) Limnology in Brazil. Academia Brasileira de Ciências e Sociedade Brasileira de Limnologia, Rio de JaneiroGoogle Scholar
  82. Uryu Y, Malm O, Thornton I, Payne I, Cleary D (2001) Mercury contamination of fish and its implications for other wildlife of the Tapajós basin, brazilian amazon. Conserv Biol 15:438–446CrossRefGoogle Scholar
  83. Verdon R, Brouard D, Demers C, Lalumiere R (1991) Mercury evolution (1978-1988) in fishes of the La Grande hydroelectric complex, Quebec, Canada. Water Air Soil Pollut 56:405–417CrossRefGoogle Scholar
  84. Wang Q, Feng X, Yang Y, Yan H (2011) Spatial and temporal variations of total and methylmercury concentrations in plankton from a mercury-contaminated and eutrophic reservoir in Guizhou Province, China. Environ Toxicol Chem 30:2739–2747CrossRefGoogle Scholar
  85. Watras CJ, Back RC, Halvorsen S, Hudson RJM, Morrison KA, Wentw SP (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219:183–208CrossRefGoogle Scholar
  86. Winfrey MR, Rudd JWM (1990) Environmental factors affecting the formation of methylmercury in low pH lakes. Environ Toxicol Chem 9:853–869CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Daniele Kasper
    • 1
  • Bruce Rider Forsberg
    • 2
  • Helena do Amaral Kehrig
    • 3
  • João Henrique Fernandes Amaral
    • 2
  • Wanderley Rodrigues Bastos
    • 4
  • Olaf Malm
    • 1
  1. 1.Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto Nacional de Pesquisas de AmazoniaManausBrazil
  3. 3.Universidade Estadual do Norte FluminenseCampos dos GoytacazesBrazil
  4. 4.Universidade Federal do RondoniaPorto VelhoBrazil

Personalised recommendations