Advertisement

Stress, Affective Status and Neurodegenerative Onslaughts

  • Trevor ArcherEmail author
  • Max Rapp-Ricciardi
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Stress, i.e. distressful, negative affect and depressive mood are associated with destructive neurodegenerative progressions involving pro-inflammatory dispositions, stroke and cardiovascular complications, and diabetes and metabolic syndrome all of which present harbingers for poor health and ill-being. Negative affect, as an indicator of anxiety and neuroticism, has repeatedly been linked to exposure to adverse and traumatic environments concomitant with psychological distress that underlie maladaptive and self-destructive behaviours expressed in psychopathology. Eustress, from the Greek ‘Good stress’, implies beneficial stress whether psychological, physical, neurochemical or radiological and is not defined by form or type but rather perception and ‘appraisal’ of the stressors. It is linked to hormesis-based adaptive neuronal response mechanisms, such as fasting, sustained physical exercise and intellectually challenging lifestyles, that provide a protection against protect against neuronal damage from neurodegenerative and corrosive onslaughts of chronic and traumatic stress. The reciprocal determinant relationship between ‘hormesic stressors’ and individuals and organisms furnishes a springboard of beneficial development and health manifestation.

Keywords

Stress Affect Neurodegeneration Inflammation Trauma Eustress Hormesis Exercise Health 

References

  1. Albert, M. A., Durazo, E. M., Slopen, N., Zaslavsky, A. M., Buring, J. E., Silva, T., … Williams, D. R. (2017). Cumulative psychological stress and cardiovascular disease risk in middle aged and older women: Rationale, design, and baseline characteristics. American Heart Journal, 192, 1–12.  https://doi.org/10.1016/j.ahj.2017.06.012PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alboni, S., Poggini, S., Garofalo, S., Milior, G., El Hajj, H., Lecours, C., … Branchi, I. (2016). Fluoxetine treatment affects the inflammatory response and microglial function according to the quality of the living environment. Brain, Behavior, and Immunity, 58, 261–271.  https://doi.org/10.1016/j.bbi.2016.07.155PubMedCrossRefGoogle Scholar
  3. Alboni, S., van Dijk, M., Poggini, S., Milior, G., Perrotta, M. L., Drenth, T., … Branchi, I. (2017). Hippocampus-related effects of fluoxetine treatment under stressful vs enriched conditions. Molecular Psychiatry, 22(4), 483.  https://doi.org/10.1038/mp.2017.69PubMedCrossRefGoogle Scholar
  4. Andela, C. D., van Haalen, F. M., Ragnarsson, O., Papakokkinou, E., Johannsson, G., Santos, A., Webb, S. M., Biermasz, N. R., van der Wee, N. J., Pereira, A. M. (2015). MECHANISMS IN ENDOCRINOLOGY: Cushing's syndrome causes irreversible effects on the human brain: A systematic review of structural and functional magnetic resonance imaging studies. European Journal of Endocrinology, 173(1), R1–R14.  https://doi.org/10.1530/EJE-14-1101.PubMedCrossRefGoogle Scholar
  5. Andrés, R. C., Helena, B. C., Juliana, P. P., Viviana, A. M., Margarita, G. B., & Marisa, C. G. (2017). Diabetes-related neurological implications and pharmacogenomics. Current Pharmaceutical Design.  https://doi.org/10.2174/1381612823666170317165350PubMedCrossRefGoogle Scholar
  6. Apostolova, L. G., & Cummings, J. L. (2008). Neuropsychiatric manifestations in mild cognitive impairment: A systematic review of the literature. Dementia and Geriatric Cognitive Disorders, 25, 115–126.PubMedCrossRefGoogle Scholar
  7. Archer, T. (2015). Physical exercise as an epigenetic factor determining behavioral outcomes. Clinical and Experimental Psychology, 1, 1.  https://doi.org/10.4172/cep.1000e101CrossRefGoogle Scholar
  8. Archer, T., & Lindahl, M. (2018). Physical exercise to determine resilience: Hormesic processes arising from physiologic perturbation. J Journal of Public Health General Medicine, 1, 1–10.Google Scholar
  9. Aulinas, A., Ramírez, M. J., Barahona, M. J., Valassi, E., Resmini, E., Mato, E., … Webb, S. M. (2014). Telomere length analysis in Cushing's syndrome. European Journal of Endocrinology, 171(1), 21–29.  https://doi.org/10.1530/EJE-14-0098PubMedCrossRefGoogle Scholar
  10. Aulinas, A., Ramírez, M. J., Barahona, M. J., Valassi, E., Resmini, E., Mato, E., … Webb, S. M. (2015). Dyslipidemia and chronic inflammation markers are correlated with telomere length shortening in Cushing's syndrome. PLoS One, 10(3), e0120185.  https://doi.org/10.1371/journal.pone.0120185PubMedPubMedCentralCrossRefGoogle Scholar
  11. Balthazar, M. L., Pereira, F. R., Lopes, T. M., da Silva, E. L., Coan, A. C., Campos, B. M., … Cendes, F. (2014). Neuropsychiatric symptoms in Alzheimer's disease are related to functional connectivity alterations in the salience network. Human Brain Mapping, 35(4), 1237–1246.  https://doi.org/10.1002/hbm.22248PubMedCrossRefGoogle Scholar
  12. Barra de la Tremblaye, P., & Plamondon, H. (2016). Alterations in the corticotropin-releasing hormone (CRH) neurocircuitry: Insights into post stroke functional impairments. Frontiers in Neuroendocrinology, 42, 53–75.  https://doi.org/10.1016/j.yfrne.2016.07.001PubMedCrossRefGoogle Scholar
  13. Bergersen H, Frøslie KF, Stibrant Sunnerhagen K, Schanke AK (2010) Anxiety, depression, and psychological well-being 2 to 5 years poststroke. J Stroke Cerebrovasc Dis. 19(5),364–369. https://doi.org/10.1016/j.jstrokecerebrovasdis.2009.06.005.PubMedCrossRefGoogle Scholar
  14. Bisht, K., Sharma, K. P., Lecours, C., Sánchez, M. G., El Hajj, H., Milior, G., … Tremblay, M. È. (2016). Dark microglia: A new phenotype predominantly associated with pathological states. Glia, 64(5), 826–839.  https://doi.org/10.1002/glia.22966PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bora, E., Fornito, A., Pantelis, C., & Yucel, M. (2012). Gray matter abnormalities in Major Depressive Disorder: A meta-analysis of voxel based morphometry studies. Journal of Affective Disorders, 138, 9–18.PubMedCrossRefGoogle Scholar
  16. Branchi, I., Alboni, S., & Maggi, L. (2014). The role of microglia in mediating the effect of the environment in brain plasticity and behavior. Frontiers in Cellular Neuroscience, 8, 390.  https://doi.org/10.3389/fncel.2014.00390PubMedPubMedCentralCrossRefGoogle Scholar
  17. Calabrese, E. J., & Mattson, M. P. (2017). How does hormesis impact biology, toxicology, and medicine? NPJ Aging and Mechanisms of Disease, 3, 13.  https://doi.org/10.1038/s41514-017-0013-zPubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen, A. L., Sun, X., Wang, W., Liu, J. F., Zeng, X., Qiu, J. F., … Wang, Y. (2017). Activation of the hypothalamic-pituitary-adrenal (HPA) axis contributes to the immunosuppression of mice infected with Angiostrongylus cantonensis. Journal of Neuroinflammation, 13(1), 266.CrossRefGoogle Scholar
  19. Crespo, I., Santos, A., Gómez-Ansón, B., López-Mourelo, O., Pires, P., Vives-Gilabert, Y., … Resmini, E. (2016). Brain metabolite abnormalities in ventromedial prefrontal cortex are related to duration of hypercortisolism and anxiety in patients with Cushing's syndrome. Endocrine, 53(3), 848–856.  https://doi.org/10.1007/s12020-016-0963-0PubMedCrossRefGoogle Scholar
  20. Delgado-Morales, R., Agís-Balboa, R. C., Esteller, M., & Berdasco, M. (2017). Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clinical Epigenetics, 9, 67.  https://doi.org/10.1186/s13148-017-0365-zPubMedPubMedCentralCrossRefGoogle Scholar
  21. Dorn, L. D., & Cerrone, P. (2000). Cognitive function in patients with Cushing syndrome: a longitudinal perspective. Clinical Nursing Research, 9(4), 420–440.PubMedCrossRefGoogle Scholar
  22. Dulka, B. N., Bourdon, A. K., Clinard, C. T., Muvvala, M. B. K., Campagna, S. R., & Cooper, M. A. (2017). Metabolomics reveals distinct neurochemical profiles associated with stress resilience. Neurobiol Stress., 7, 103–112.  https://doi.org/10.1016/j.ynstr.2017.08.001PubMedPubMedCentralCrossRefGoogle Scholar
  23. Edmondson, D., Sumner, J. A., Kronish, I. M., Burg, M. M., Oyesiku, L., & Schwartz, J. E. (2017). The association of PTSD with clinic and ambulatory blood pressure in healthy adults. Psychosomatic Medicine.  https://doi.org/10.1097/PSY.0000000000000523PubMedPubMedCentralCrossRefGoogle Scholar
  24. Elwenspoek, M. M. C., Hengesch, X., Leenen, F. A. D., Schritz, A., Sias, K., Schaan, V. K., … Muller, C. P. (2017). Proinflammatory T Cell status associated with early life adversity. Journal of Immunology, ji1701082.  https://doi.org/10.4049/jimmunol.1701082PubMedCrossRefGoogle Scholar
  25. Elwenspoek, M. M. C., Kuehn, A., Muller, C. P., & Turner, J. D. (2017). The effects of early life adversity on the immune system. Psychoneuroendocrinology, 82, 140–154.  https://doi.org/10.1016/j.psyneuen.2017.05.012PubMedCrossRefGoogle Scholar
  26. Elwenspoek, M. M. C., Sias, K., Hengesch, X., Schaan, V. K., Leenen, F. A. D., Adams, P., … Turner, J. D. (2017). T Cell Immunosenescence after Early Life Adversity: Association with Cytomegalovirus Infection. Frontiers in Immunology, 8, 1263.  https://doi.org/10.3389/fimmu.2017.01263PubMedPubMedCentralCrossRefGoogle Scholar
  27. Emack, J., Kostaki, A., Walker, C. D., & Matthews, S. G. (2008). Chronic maternal stress affects growth, behaviour and hypothalamo-pituitary-adrenal function in juvenile offspring. Hormones and Behavior, 54(4), 514–520.  https://doi.org/10.1016/j.yhbeh.2008.02.025PubMedCrossRefGoogle Scholar
  28. Erny, D., Hrabě de Angelis, A. L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., … Prinz, M. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 18(7), 965–977.  https://doi.org/10.1038/nn.4030PubMedPubMedCentralCrossRefGoogle Scholar
  29. Erny, D., Hrabě de Angelis, A. L., & Prinz, M. (2017). Communicating systems in the body: How microbiota and microglia cooperate. Immunology, 150(1), 7–15.  https://doi.org/10.1111/imm.12645PubMedCrossRefGoogle Scholar
  30. Erny, D., & Prinz, M. (2017). Microbiology: Gut microbes augment neurodegeneration. Nature, 544(7650), 304–305.  https://doi.org/10.1038/nature21910PubMedCrossRefGoogle Scholar
  31. Espinosa-Garcia, C., Sayeed, I., Yousuf, S., Atif, F., Sergeeva, E. G., Neigh, G. N., & Stein, D. G. (2017). Stress primes microglial polarization after global ischemia: Therapeutic potential of progesterone. Brain, Behavior, and Immunity, 66, 177–192.  https://doi.org/10.1016/j.bbi.2017.06.012PubMedCrossRefGoogle Scholar
  32. Faure, J., Uys, J. D., Marais, L., Stein, D. J., & Daniels, W. M. (2007). Early maternal separation alters the response to traumatization: Resulting in increased levels of hippocampal neurotrophic factors. Metabolic Brain Disease, 22(2), 183–195.PubMedCrossRefGoogle Scholar
  33. Febbraro, F., Svenningsen, K., Tran, T. P., & Wiborg, O. (2017). Neuronal substrates underlying stress resilience and susceptibility in rats. PLoS One, 12(6), e0179434.  https://doi.org/10.1371/journal.pone.0179434PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fornaro, M., Solmi, M., Veronese, N., De Berardis, D., Buonaguro, E. F., Tomasetti, C., … Carta, M. G. (2017). The burden of mood-disorder/cerebrovascular disease comorbidity: Essential neurobiology, psychopharmacology, and physical activity interventions. International Review of Psychiatry, 29(5), 425–435.  https://doi.org/10.1080/09540261.2017.1299695PubMedCrossRefGoogle Scholar
  35. Geisler, J. G., Marosi, K., Halpern, J., & Mattson, M. P. (2017). DNP, mitochondrial uncoupling, and neuroprotection: A little dab'll do ya. Alzheimer's & Dementia, 13(5), 582–591.  https://doi.org/10.1016/j.jalz.2016.08.001CrossRefGoogle Scholar
  36. Gerber, M., Ludyga, S., Mücke, M., Colledge, F., Brand, S., & Pühse, U. (2017). Low vigorous physical activity is associated with increased adrenocortical reactivity to psychosocial stress in students with high stress perceptions. Psychoneuroendocrinology, 80, 104–113.  https://doi.org/10.1016/j.psyneuen.2017.03.004PubMedCrossRefGoogle Scholar
  37. Gilsanz, P., Winning, A., Koenen, K. C., Roberts, A. L., Sumner, J. A., Chen, Q., … Kubzansky, L. D. (2017). Post-traumatic stress disorder symptom duration and remission in relation to cardiovascular disease risk among a large cohort of women. Psychological Medicine, 47(8), 1370–1378.  https://doi.org/10.1017/S0033291716003378PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gottlieb, D. H., Del Rosso, L., Sheikhi, F., Gottlieb, A., McCowan, B., & Capitanio, J. P. (2018). Personality, environmental stressors, and diarrhea in Rhesus macaques: An interactionist perspective. American Journal of Primatology, e22908.  https://doi.org/10.1002/ajp.22908PubMedCrossRefGoogle Scholar
  39. Gradari, S., Pallé, A., McGreevy, K. R., Fontán-Lozano, Á., & Trejo, J. L. (2016). Can exercise make you smarter, happier, and have more neurons? A Hormetic Perspective. Front Neurosci., 10, 93.  https://doi.org/10.3389/fnins.2016.00093PubMedCrossRefGoogle Scholar
  40. Hamilton KL, Miller BF (2016) What is the evidence for stress resistance and slowed aging? Exp Gerontol. 82,:67–72. https://doi.org/10.1016/j.exger.2016.06.001PubMedCrossRefGoogle Scholar
  41. Hecker, T., Goessmann, K., Nkuba, M., & Hermenau, K. (2017). Teachers’ stress intensifies violent disciplining in Tanzanian secondary schools. Child Abuse & Neglect, 76, 173–183.  https://doi.org/10.1016/j.chiabu.2017.10.019CrossRefGoogle Scholar
  42. Hernaus, D., Quaedflieg, C. W. E. M., Offermann, J. S., Santa, M. M. C., & van Amelsvoort, T. (2017). Neuroendocrine stress responses predict catecholamine-dependent working memory-related dorsolateral prefrontal cortex activity. Social Cognitive and Affective Neuroscience.  https://doi.org/10.1093/scan/nsx122PubMedCentralCrossRefGoogle Scholar
  43. Horowitz, M. (2017). Heat acclimation-mediated cross-tolerance: Origins in within-life epigenetics? Frontiers in Physiology, 8, 548.  https://doi.org/10.3389/fphys.2017.00548PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jiang, H., He, N. Y., Sun, Y. H., Jian, F. F., Bian, L. G., Shen, J. K., … Sun, Q. F. (2017). Altered gray and white matter microstructure in Cushing's disease: A diffusional kurtosis imaging study. Brain Research, 1665, 80–87.  https://doi.org/10.1016/j.brainres.2017.04.007PubMedCrossRefGoogle Scholar
  45. Jin, W. N., Shi, S. X., Li, Z., Li, M., Wood, K., Gonzales, R. J., & Liu, Q. (2017). Depletion of microglia exacerbates postischemic inflammation and brain injury. Journal of Cerebral Blood Flow and Metabolism, 37(6), 2224–2236.  https://doi.org/10.1177/0271678X17694185PubMedPubMedCentralCrossRefGoogle Scholar
  46. Karisetty, B. C., Joshi, P. C., Kumar, A., & Chakravarty, S. (2017). Sex differences in the effect of chronic mild stress on mouse prefrontal cortical BDNF levels: A role of major ovarian hormones. Neuroscience, 356, 89–101.  https://doi.org/10.1016/j.neuroscience.2017.05.020PubMedCrossRefGoogle Scholar
  47. Karisetty, B. C., Khandelwal, N., Kumar, A., & Chakravarty, S. (2017). Sex difference in mouse hypothalamic transcriptome profile in stress-induced depression model. Biochemical and Biophysical Research Communications, 486(4), 1122–1128.  https://doi.org/10.1016/j.bbrc.2017.04.005PubMedCrossRefGoogle Scholar
  48. Karisetty, B. C., Maitra, S., Wahul, A. B., Musalamadugu, A., Khandelwal, N., Guntupalli, S., … Chakravarty, S. (2017). Differential effect of chronic stress on mouse hippocampal memory and affective behavior: Role of major ovarian hormones. Behavioural Brain Research, 318, 36–44.  https://doi.org/10.1016/j.bbr.2016.10.034PubMedCrossRefGoogle Scholar
  49. Khoshnam, S. E., Winlow, W., Farzaneh, M., Farbood, Y., & Moghaddam, H. F. (2017). Pathogenic mechanisms following ischemic stroke. Neurological Sciences, 38(7), 1167–1186.  https://doi.org/10.1007/s10072-017-2938-1PubMedCrossRefGoogle Scholar
  50. Kim, S. A., Lee, Y. M., Choi, J. Y., Jacobs, D. R., Jr., & Lee, D. H. (2017). Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. Environmental Pollution, 233, 725–734.  https://doi.org/10.1016/j.envpol.2017.10.124PubMedCrossRefGoogle Scholar
  51. Kluge, M. G., Kracht, L., Abdolhoseini, M., Ong, L. K., Johnson, S. J., Nilsson, M., & Walker, F. R. (2017). Impaired microglia process dynamics post-stroke are specific to sites of secondary neurodegeneration. Glia, 65(12), 1885–1899.  https://doi.org/10.1002/glia.23201PubMedCrossRefGoogle Scholar
  52. Kroemer, G. (2015). Autophagy: a druggable process that is deregulated in aging and human disease. The Journal of Clinical Investigation, 125(1), 1–4.  https://doi.org/10.1172/JCI78652PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kroemer, G. (2017). Death, danger & immunity: Fundamental mechanisms linking pathogenic or iatrogenic cell death events to immune responses. Immunological Reviews, 280(1), 5–7.  https://doi.org/10.1111/imr.12604PubMedCrossRefGoogle Scholar
  54. Laine, M. A., Sokolowska, E., Dudek, M., Callan, S. A., Hyytiä, P., & Hovatta, I. (2017). Brain activation induced by chronic psychosocial stress in mice. Scientific Reports, 7(1), 15061.  https://doi.org/10.1038/s41598-017-15422-5PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lawler, J. M., Rodriguez, D. A., & Hord, J. M. (2016). Mitochondria in the middle: exercise preconditioning protection of striated muscle. The Journal of Physiology, 594(18), 5161–5183.  https://doi.org/10.1113/JP270656PubMedPubMedCentralCrossRefGoogle Scholar
  56. Levenson, R. W., Sturm, V. E., & Haase, C. M. (2014). Emotional and behavioral symptoms in neurodegenerative disease: A model for studying the neural bases of psychopathology. Annual Review of Clinical Psychology, 10, 581–606.  https://doi.org/10.1146/annurev-clinpsy-032813-153653PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lomeli, N., Bota, D. A., & Davies, K. J. A. (2017). Diminished stress resistance and defective adaptive homeostasis in age-related diseases. Clinical Science (London, England), 131(21), 2573–2599.  https://doi.org/10.1042/CS20160982CrossRefGoogle Scholar
  58. Lopes, T. M., D'Abreu, A., França, M. C., Jr., Yasuda, C. L., Betting, L. E., Samara, A. B., … Cendes, F. (2013). Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3. Journal of Neurology, 260(9), 2370–2379.  https://doi.org/10.1007/s00415-013-6998-8PubMedCrossRefGoogle Scholar
  59. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217.  https://doi.org/10.1016/j.cell.2013.05.039PubMedPubMedCentralCrossRefGoogle Scholar
  60. López-Otín, C., Galluzzi, L., Freije, J. M. P., Madeo, F., & Kroemer, G. (2016). Metabolic control of longevity. Cell, 166(4), 802–821.  https://doi.org/10.1016/j.cell.2016.07.031PubMedCrossRefGoogle Scholar
  61. Lwi, S. J., Ford, B. Q., Casey, J. J., Miller, B. L., & Levenson, R. W. (2017). Poor caregiver mental health predicts mortality of patients with neurodegenerative disease. Proceedings of the National Academy of Sciences of the United States of America, 114(28), 7319–7324.  https://doi.org/10.1073/pnas.1701597114PubMedPubMedCentralCrossRefGoogle Scholar
  62. Makhathini, K. B., Abboussi, O., Stein, D. J., Mabandla, M. V., & Daniels, W. M. U. (2017). Repetitive stress leads to impaired cognitive function that is associated with DNA hypomethylation, reduced BDNF and a dysregulated HPA axis. International Journal of Developmental Neuroscience, 60, 63–69.  https://doi.org/10.1016/j.ijdevneu.2017.04.004PubMedCrossRefGoogle Scholar
  63. Markostamou I, Ioannidis A, Dandi E, Mandyla MA, Nousiopoulou E, Simeonidou C, Spandou E, Tata DA (2016) Maternal separation prior to neonatal hypoxia-ischemia: Impact on emotional aspects of behavior and markers of synaptic plasticity in hippocampus. Int J Dev Neurosci. 52, 1–12. https://doi.org/10.1016/j.ijdevneu.2016.04.002PubMedCrossRefGoogle Scholar
  64. Meyer EC, La Bash H, DeBeer BB, Kimbrel NA, Gulliver SB, Morissette SB (2018) Psychological inflexibility predicts PTSD symptom severity in war veterans after accounting for established PTSD risk factors and personality. Psychol Trauma. 11(4):383–390. https://doi.org/10.1037/tra0000358.CrossRefGoogle Scholar
  65. Melinder C, Hiyoshi A, Fall K, Halfvarson J, Montgomery S (2017) Stress resilience and the risk of inflammatory bowel disease: a cohort study of men living in Sweden. BMJ Open. 7(1):e014315. https://doi.org/10.1136/bmjopen-2016-014315PubMedPubMedCentralCrossRefGoogle Scholar
  66. Milior, G., Lecours, C., Samson, L., Bisht, K., Poggini, S., Pagani, F., … Maggi, L. (2016). Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain, Behavior, and Immunity, 55, 114–125.  https://doi.org/10.1016/j.bbi.2015.07.024PubMedCrossRefGoogle Scholar
  67. Moksnes, U. K., & Lazarewicz, M. (2017). The association between stress, resilience, and emotional symptoms in Norwegian adolescents from 13 to 18 years old. Journal of Health Psychology, 1359105316687630.  https://doi.org/10.1177/1359105316687630PubMedCrossRefGoogle Scholar
  68. Newell-Price, J. (2016). Pituitary gland: Mortality in cushing disease. Nature Reviews. Endocrinology, 12(9), 502–503.  https://doi.org/10.1038/nrendo.2016.118PubMedCrossRefGoogle Scholar
  69. Newell-Price, J., Bertagna, X., Grossman, A. B., & Nieman, L. K. (2006). Cushing’s syndrome. Lancet, 367(9522), 1605–1617.PubMedCrossRefGoogle Scholar
  70. Niu, H., Zhang, Z., Wang, H., Wang, H., Zhang, J., Li, C., & Zhao, L. (2016). The impact of butylphthalide on the hypothalamus-pituitary-adrenal axis of patients suffering from cerebral infarction in the basal ganglia. Electronic Physician, 8(1), 1759–1763.  https://doi.org/10.19082/1759PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pan, M., Wang, P., Zheng, C., Zhang, H., Lin, S., Shao, B., … Jin, K. (2017). Aging systemic milieu impairs outcome after ischemic stroke in rats. Aging and Disease, 8(5), 519–530.  https://doi.org/10.14336/AD.2017.0710PubMedPubMedCentralCrossRefGoogle Scholar
  72. Pires, P., Santos, A., Vives-Gilabert, Y., Webb, S. M., Sainz-Ruiz, A., Resmini, E., … Gómez-Anson, B. (2015). White matter alterations in the brains of patients with active, remitted, and cured Cushing syndrome: A DTI study. AJNR. American Journal of Neuroradiology, 36(6), 1043–1048.  https://doi.org/10.3174/ajnr.A4322PubMedCrossRefGoogle Scholar
  73. Pires, P., Santos, A., Vives-Gilabert, Y., Webb, S. M., Sainz-Ruiz, A., Resmini, E., … Gómez-Anson, B. (2017). White matter involvement on DTI-MRI in Cushing's syndrome relates to mood disturbances and processing speed: A case-control study. Pituitary, 20(3), 340–348.  https://doi.org/10.1007/s11102-017-0793-yPubMedCrossRefGoogle Scholar
  74. Plaza-Zabala, A., Sierra-Torre, V., & Sierra, A. (2017). Autophagy and microglia: Novel partners in neurodegeneration and aging. International Journal of Molecular Sciences, 18(3), E598.  https://doi.org/10.3390/ijms18030598PubMedCrossRefGoogle Scholar
  75. Qin, C., Fan, W. H., Liu, Q., Shang, K., Murugan, M., Wu, L. J., … Tian, D. S. (2017). Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke, STROKEAHA.117.018505.  https://doi.org/10.1161/STROKEAHA.117.018505PubMedPubMedCentralCrossRefGoogle Scholar
  76. Radak, Z., Ishihara, K., Tekus, E., Varga, C., Posa, A., Balogh, L., … Koltai, E. (2017). Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biology, 12, 285–290.  https://doi.org/10.1016/j.redox.2017.02.015PubMedPubMedCentralCrossRefGoogle Scholar
  77. Raefsky, S. M., & Mattson, M. P. (2017). Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance. Free Radical Biology & Medicine, 102, 203–216.  https://doi.org/10.1016/j.freeradbiomed.2016.11.045CrossRefGoogle Scholar
  78. Resmini, E., Santos, A., Gómez-Anson, B., López-Mourelo, O., Pires, P., Vives-Gilabert, Y., … Webb, S. M. (2013). Hippocampal dysfunction in cured Cushing's syndrome patients, detected by (1) H-MR-spectroscopy. Clinical Endocrinology, 79(5), 700–707.  https://doi.org/10.1111/cen.12224PubMedCrossRefGoogle Scholar
  79. Roberts, A. L., Koenen, K. C., Chen, Q., Gilsanz, P., Mason, S. M., Prescott, J., … Kubzansky, L. D. (2017). Posttraumatic stress disorder and accelerated aging: PTSD and leukocyte telomere length in a sample of civilian women. Depression and Anxiety, 34(5), 391–400.  https://doi.org/10.1002/da.22620PubMedPubMedCentralCrossRefGoogle Scholar
  80. Santos, A., Resmini, E., Gómez-Ansón, B., Crespo, I., Granell, E., Valassi, E., … Webb, S. M. (2015). Cardiovascular risk and white matter lesions after endocrine control of Cushing's syndrome. European Journal of Endocrinology, 173(6), 765–775.  https://doi.org/10.1530/EJE-15-0600PubMedCrossRefGoogle Scholar
  81. Santos, A., Resmini, E., Martinez-Momblan, M. A., Crespo, I., Valassi, E., Roset, M., … Webb, S. M. (2012). Psychometric performance of the Cushing QoL questionnaire in conditions of real clinical practice. European Journal of Endocrinology, 167, 337–342.  https://doi.org/10.1530/EJE-12-0325PubMedCrossRefGoogle Scholar
  82. Schoenfeld, T. J., McCausland, H. C., Morris, H. D., Padmanaban, V., & Cameron, H. A. (2017). Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biological Psychiatry, 82(12), 914–923.  https://doi.org/10.1016/j.biopsych.2017.05.013PubMedPubMedCentralCrossRefGoogle Scholar
  83. Shields, G. S., Doty, D., Shields, R. H., Gower, G., Slavich, G. M., & Yonelinas, A. P. (2017). Recent life stress exposure is associated with poorer long-term memory, working memory, and self-reported memory. Stress, 12, 1–10.  https://doi.org/10.1080/10253890.2017.1380620CrossRefGoogle Scholar
  84. Shields, G. S., Moons, W. G., & Slavich, G. M. (2017). Better executive function under stress mitigates the effects of recent life stress exposure on health in young adults. Stress, 20(1), 75–85.  https://doi.org/10.1080/10253890.2017.1286322PubMedPubMedCentralCrossRefGoogle Scholar
  85. Shields, G. S., & Slavich, G. M. (2017). Lifetime stress exposure and health: A review of contemporary assessment methods and biological mechanisms. Social and Personality Psychology Compass, 11(8), e12335.  https://doi.org/10.1111/spc3.12335PubMedPubMedCentralCrossRefGoogle Scholar
  86. Simone, J. J., Baumbach, J. L., & McCormick, C. M. (2017). Effects of CB1 receptor antagonism and stress exposures in adolescence on socioemotional behaviours, neuroendocrine stress responses, and expression of relevant proteins in the hippocampus and prefrontal cortex in rats. Neuropharmacology, S0028–3908(17), 30496–30493.  https://doi.org/10.1016/j.neuropharm.2017.10.029CrossRefGoogle Scholar
  87. Singhal, G., & Baune, B. T. (2017). Microglia: An interface between the loss of neuroplasticity and depression. Frontiers in Cellular Neuroscience, 11, 270.  https://doi.org/10.3389/fncel.2017.00270PubMedPubMedCentralCrossRefGoogle Scholar
  88. Slavich, G. M. (2016). Life stress and health: A review of conceptual issues and recent findings. Teaching of Psychology, 43(4), 346–355.PubMedCrossRefGoogle Scholar
  89. Stoll G, Zitvogel L, Kroemer G (2015) Immune infiltrate in cancer. Aging (Albany NY). 7(6), 358–359.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Snippe, E., Dziak, J. J., Lanza, S. T., Nyklíček, I., & Wichers, M. (2017). The shape of change in perceived stress, negative affect, and stress sensitivity during mindfulness-based stress reduction. Mindfulness (N Y)., 8(3), 728–736.  https://doi.org/10.1007/s12671-016-0650-5CrossRefGoogle Scholar
  91. Sonino, N., Guidi, J., & Fava, G. A. (2015). Psychological aspects of endocrine disease. The Journal of the Royal College of Physicians of Edinburgh, 45(1), 55–59.  https://doi.org/10.4997/JRCPE.2015.413PubMedCrossRefGoogle Scholar
  92. Sorrells, S. F., Caso, J. R., Munhoz, C. D., Hu, C. K., Tran, K. V., Miguel, Z. D., … Sapolsky, R. M. (2013). Glucocorticoid signaling in myeloid cells worsens acute CNS injury and inflammation. The Journal of Neuroscience, 33(18), 7877–7889.  https://doi.org/10.1523/JNEUROSCI.4705-12.2013PubMedPubMedCentralCrossRefGoogle Scholar
  93. Stuller, K. A., Jarrett, B., & DeVries, A. C. (2012). Stress and social isolation increase vulnerability to stroke. Experimental Neurology, 233(1), 33–39.  https://doi.org/10.1016/j.expneurol.2011.01.016PubMedCrossRefGoogle Scholar
  94. Stringer WW, Rossiter HB (2017) Hormesis, mithridatism and Paracelsus: A little oxidative stress goes a long way. Hypertens Res. 40(1), 29–30. https://doi.org/10.1038/hr.2016.104PubMedCrossRefGoogle Scholar
  95. Sturm, V. E., Sollberger, M., Seeley, W. W., Rankin, K. P., Ascher, E. A., Rosen, H. J., … Levenson, R. W. (2013). Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity. Social Cognitive and Affective Neuroscience, 8(4), 468–474.  https://doi.org/10.1093/scan/nss023PubMedCrossRefGoogle Scholar
  96. Sumner, J. A., Chen, Q., Roberts, A. L., Winning, A., Rimm, E. B., Gilsanz, P., … Kubzansky, L. D. (2017). Cross-sectional and longitudinal associations of chronic posttraumatic stress disorder with inflammatory and endothelial function markers in women. Biological Psychiatry, 82(12), 875–884.  https://doi.org/10.1016/j.biopsych.2017.06.020PubMedPubMedCentralCrossRefGoogle Scholar
  97. Szcześniak, D. M., Jawiarczyk-Przybyłowska, A., Matusiak, Ł., Bolanowska, A., Maciaszek, J., Siemińska, M., … Bolanowski, M. (2017). Is there any difference in acromegaly and other chronic disease in quality of life and psychiatric morbidity? Endokrynologia Polska.  https://doi.org/10.5603/EP.a2017.0044
  98. Tiemensma, J., Biermasz, N. R., Middelkoop, H. A., van der Mast, R. C., Romijn, J. A., & Pereira, A. M. (2010). Increased prevalence of psychopathology and maladaptive personality traits after long-term cure of Cushing's disease. The Journal of Clinical Endocrinology and Metabolism, 95(10), E129–E141.  https://doi.org/10.1210/jc.2010-0512PubMedCrossRefGoogle Scholar
  99. Uys, J. D., Marais, L., Faure, J., Prevoo, D., Swart, P., Mohammed, A. H., … Daniels, W. M. (2006). Developmental trauma is associated with behavioral hyperarousal, altered HPA axis activity, and decreased hippocampal neurotrophin expression in the adult rat. Annals of the New York Academy of Sciences, 1071, 542–546.PubMedCrossRefGoogle Scholar
  100. Vaiserman, A. M. (2011). Hormesis and epigenetics: Is there a link? Ageing Research Reviews, 10(4), 413–421.  https://doi.org/10.1016/j.arr.2011.01.004PubMedCrossRefGoogle Scholar
  101. Vaiserman, A. M. (2014). Aging-modulating treatments: from reductionism to a system-oriented perspective. Frontiers in Genetics, 5, 446.  https://doi.org/10.3389/fgene.2014.00446PubMedPubMedCentralCrossRefGoogle Scholar
  102. Valassi, E., Crespo, I., Keevil, B. G., Aulinas, A., Urgell, E., Santos, A., … Webb, S. M. (2017). Affective alterations in patients with Cushing's syndrome in remission are associated with decreased BDNF and cortisone levels. European Journal of Endocrinology, 176(2), 221–231.PubMedCrossRefGoogle Scholar
  103. Valassi, E., Franz, H., Brue, T., Feelders, R. A., Netea-Maier, R., Tsagarakis, S., … ERCUSYN Study Group. (2017). Diagnostic tests for Cushing's syndrome differ from published guidelines: Data from ERCUSYN. European Journal of Endocrinology, 76(5), 613–624.  https://doi.org/10.1530/EJE-16-0967CrossRefGoogle Scholar
  104. Vieira, J. O., Duarte, J. O., Costa-Ferreira, W., Morais-Silva, G., Marin, M. T., & Crestani, C. C. (2017). Sex differences in cardiovascular, neuroendocrine and behavioral changes evoked by chronic stressors in rats. Progress in Neuro-Psychopharmacology & Biological Psychiatry, S0278–5846(17), 30407–30404.  https://doi.org/10.1016/j.pnpbp.2017.08.014CrossRefGoogle Scholar
  105. Villa, R. F., Ferrari, F., & Moretti, A. (2017). Post-stroke depression: Mechanisms and pharmacological treatment. Pharmacology & Therapeutics, S0163–7258(17), 30289–30289.  https://doi.org/10.1016/j.pharmthera.2017.11.005CrossRefGoogle Scholar
  106. Wagenmakers, M. A., Netea-Maier, R. T., Prins, J. B., Dekkers, T., den Heijer, M., & Hermus, A. R. (2012). Impaired quality of life in patients in long-term remission of Cushing's syndrome of both adrenal and pituitary origin: a remaining effect of long-standing hypercortisolism? European Journal of Endocrinology, 167(5), 687–695.  https://doi.org/10.1530/EJE-12-0308PubMedCrossRefGoogle Scholar
  107. Waltz, T. B., Fivenson, E. M., Morevati, M., Li, C., Becker, K. G., Bohr, V. A., & Fang, E. F. (2017). Sarcopenia, aging and prospective interventional strategies. Current Medicinal Chemistry.  https://doi.org/10.2174/0929867324666170801095850CrossRefGoogle Scholar
  108. Webb, R., Hughes, M. G., Thomas, A. W., & Morris, K. (2017). The ability of exercise-associated oxidative stress to trigger redox-sensitive signalling responses. Antioxidants (Basel), 6(3), E63.  https://doi.org/10.3390/antiox6030063CrossRefGoogle Scholar
  109. Woda, A., Picard, P., & Dutheil, F. (2016). Dysfunctional stress responses in chronic pain. Psychoneuroendocrinology, 71, 127–135.  https://doi.org/10.1016/j.psyneuen.2016.05.017PubMedCrossRefGoogle Scholar
  110. Yin, J., Jin, X., Shan, Z., Li, S., Huang, H., Li, P., … Liu, L. (2017). Relationship of sleep duration with all-cause mortality and cardiovascular events: A systematic review and dose-response meta-analysis of prospective cohort studies. Journal of the American Heart Association, 6(9), e005947.  https://doi.org/10.1161/JAHA.117.005947PubMedPubMedCentralCrossRefGoogle Scholar
  111. Yuen, E. Y., Wei, J., Liu, W., Zhong, P., Li, X., & Yan, Z. (2012). Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron, 73(5), 962–977.  https://doi.org/10.1016/j.neuron.2011.12.033PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yuen, E. Y., Wei, J., & Yan, Z. (2016). Estrogen in prefrontal cortex blocks stress-induced cognitive impairments in female rats. The Journal of Steroid Biochemistry and Molecular Biology, 160, 221–226.  https://doi.org/10.1016/j.jsbmb.2015.08.028PubMedCrossRefGoogle Scholar
  113. Yuen, E. Y., Wei, J., & Yan, Z. (2017). Molecular and epigenetic mechanisms for the complex effects of stress on synaptic physiology and cognitive functions. The International Journal of Neuropsychopharmacology, 20(11), 948–955.  https://doi.org/10.1093/ijnp/pyx052PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yuen, E. Y., Zhong, P., Li, X., Wei, J., & Yan, Z. (2013). Restoration of glutamatergic transmission by dopamine D4 receptors in stressed animals. The Journal of Biological Chemistry, 288(36), 26112–26120.  https://doi.org/10.1074/jbc.M112.396648PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zhao, S. C., Ma, L. S., Chu, Z. H., Xu, H., Wu, W. Q., & Liu, F. (2017). Regulation of microglial activation in stroke. Acta Pharmacologica Sinica, 38(4), 445–458.  https://doi.org/10.1038/aps.2016.162PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zhao, Z., Zhang, L., Guo, X. D., Cao, L. L., Xue, T. F., Zhao, X. J., … Sun, X. L. (2017). Rosiglitazone exerts an anti-depressive effect in unpredictable chronic mild-stress-induced depressive mice by maintaining essential neuron autophagy and inhibiting excessive astrocytic apoptosis. Frontiers in Molecular Neuroscience, 10, 293.  https://doi.org/10.3389/fnmol.2017.00293PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zimmermann, A., Bauer, M. A., Kroemer, G., Madeo, F., & Carmona-Gutierrez, D. (2014). When less is more: Hormesis against stress and disease. Microb Cell, 1(5), 150–153.  https://doi.org/10.15698/mic2014.05.148PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of GothenburgGothenburgSweden

Personalised recommendations