Advertisement

The Future of Personalized Care: Scientific, Measurement, and Practical Advancements in Personality and Brain Disorders

  • Petri J. KajoniusEmail author
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Background: Person-centered care sciences are experiencing rapid progress. Personalization in care services is becoming the norm, and implementation from scientific knowledge is increasingly acknowledged and mandated. Advances in personality and brain disorder research are crucial in assisting the future development of personalized care. Aim: We will attempt to present glimpses into the future of personalized care with support from frontline science, measurement, and practice, updating with input from personality genetics and measurement theory. Outline: We present three broad developments: (1) scientific advancements in understanding how personality and genetics are central in predicting mental health and disorders, with the potential to increase predictive diagnosis and treatment validity; (2) measurement advancements with help of trait dimensions and latent structures, with the potential to increase reliability in assessing personalized care needs and functioning; (3) practical advancements in implementing a personalized approach in care services, with the potential to increase effectiveness and satisfaction with patients. We review this glimpse into the future by referencing key findings in personality and assessment meta-analyses, genome-wide association studies (GWAS), and trait measurements in psychiatric disorders. Conclusion: Personalizing care services will benefit practitioners and patients. We suggest and recommend that personalized care diagnosis and treatment is the way forward and that the future will be potentially revolutionized by incorporating the presented advancements in personality research and brain sciences.

Keywords

Person-centered care Personality Personality assessment Genetics Patient satisfaction 

References

  1. Allen, T. A., & Deyoung, C. G. (2017). Personality neuroscience and the five factor model. In T. Widiger (Ed.), Oxford handbook of the five factor model (pp. 319–352). Oxford, UK: Oxford University Press.  https://doi.org/10.1093/oxfordhb/9780199352487.001.0001CrossRefGoogle Scholar
  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, D.C.: Author.CrossRefGoogle Scholar
  3. Anusic, I., & Schimmack, U. (2016). Stability and change of personality traits, self-esteem, and well-being: Introducing the meta-analytic stability and change model of retest correlations. Journal of Personality and Social Psychology, 110(5), 766–781.  https://doi.org/10.1037/pspp0000066CrossRefPubMedGoogle Scholar
  4. Bach, B., Sellbom, M., Kongerslev, M., Simonsen, E., Krueger, R. F., & Mulder, R. T. (2017). Deriving ICD-11 personality disorder domains from DSM-5 traits: Initial attempt to harmonize two diagnostic systems. Acta Psychiatrica Scandinavica, 136, 108–117.  https://doi.org/10.1111/acps.12748CrossRefPubMedGoogle Scholar
  5. Briley, D. A., & Tucker-drob, E. M. (2014). Genetic and environmental continuity in personality development: A meta-analysis. Psychological Bulletin, 140(5), 1303–1331.  https://doi.org/10.1037/a0037091CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Consortium, R., … Neale, B. M. (2015). An atlas of genetic correlations across human diseases and traits. bioRxiv, 47(11), 1–44.  https://doi.org/10.1101/014498CrossRefGoogle Scholar
  7. Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., … Moffitt, T. E. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119–137.  https://doi.org/10.1177/2167702613497473CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J., & Laibson, D. I. (2015). The fourth law of behavior genetics. Current Directions in Psychological Science, 24(4), 304–312.CrossRefGoogle Scholar
  9. Cuijpers, P., Smit, F., Penninx, B. W., de Graaf, R., ten Have, M., & Beekman, A. T. (2010). Economic costs of neuroticism: A population-based study. Archives of General Psychiatry, 67(10), 1086–1093.  https://doi.org/10.1001/archgenpsychiatry.2010.130CrossRefPubMedGoogle Scholar
  10. Deary, I. J., Batty, G. D., Pattie, A., & Gale, C. R. (2008). More intelligent, more dependable children live longer: A 55-year longitudinal study of a representative sample of the Scottish nation. Psychological Science, 19(9), 874–880.  https://doi.org/10.1111/j.1467-9280.2008.02171.xCrossRefPubMedGoogle Scholar
  11. Deary, I. J., Pattie, A., & Starr, J. M. (2013). The stability of intelligence from age 11 to age 90 years: The Lothian birth cohort of 1921. Psychological Science, 24(12), 2361–2368.  https://doi.org/10.1177/0956797613486487CrossRefPubMedGoogle Scholar
  12. Dubois, J., & Adolphs, R. (2016). Building a science of individual differences from fMRI. Trends in Cognitive Sciences, 20(6), 425–443.  https://doi.org/10.1016/j.tics.2016.03.014CrossRefPubMedPubMedCentralGoogle Scholar
  13. Garcia, D., Lundström, S., Brändström, S., Råstam, M., Cloninger, C. R., Kerekes, N., … Anckarsäter, H. (2013). Temperament and Character in the Child and Adolescent Twin Study in Sweden (CATSS): Comparison to the general population, and genetic structure analysis. PLoS One, 8(8), e70475.  https://doi.org/10.1371/journal.pone.0070475CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garcia, G., Archer, T., & Kostrzewa, R. M. (2017). Personality and brain disorders. New York, NY: Springer.Google Scholar
  15. Hill, W. D., Arslan, R. C., Xia, C., Luciano, M., Amador, C., Navarro, P., ... & Deary, I. J. (2018). Genomic analysis of family data reveals additional genetic effects on intelligence and personality. Molecular psychiatry, 23(12), 2347–2362.Google Scholar
  16. Hill, W. D., Davies, G., McIntosh, A. M., Gale, C. R., & Deary, I. J. (2017). A combined analysis of genetically correlated traits identifies 107 loci associated with intelligence. BioRxiv, 160291. Google Scholar
  17. Hill, W. D., Hagenaars, S. P., Marioni, R. E., Harris, S. E., Liewald, D. C., Davies, G., … Deary, I. J. (2016). Molecular genetic contributions to social deprivation and household income in UK Biobank. Current Biology, 26(22), 3083–3089.  https://doi.org/10.1101/043000CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kajonius, P. J. (2017a). The short personality inventory for DSM-5 and its conjoined structure with the common five-factor model. International Journal of Testing, 17(4), 372–384.  https://doi.org/10.1080/15305058.2017.1309421CrossRefGoogle Scholar
  19. Kajonius, P. (2017b). Five factor model-based personality disorders across sex and age-groups (N = 320,128). 107th annual meeting of the American Psychopathological Association, March 2–4, 2017 Crowne Plaza, Times Square, New York, USA.Google Scholar
  20. Kajonius, P., & Dåderman, A. (2017). Conceptualizations of personality disorders with the five-factor model-count and empathy traits. International Journal of Testing, 17(2), 141–157.  https://doi.org/10.1080/15305058.2017.1279164CrossRefGoogle Scholar
  21. Kajonius, P., & Kazemi, A. (2016). Cost and satisfaction trends in Swedish elderly home care. Home Health Care Management & Practice, 28(4), 250–255.  https://doi.org/10.1177/1084822316646353CrossRefGoogle Scholar
  22. Kajonius, P., Kazemi, A., & Tengblad, S. (2015). Organizing principles and management climate in high-performing municipal elderly care. Leadership in Health Services, 29(1), 82–94.  https://doi.org/10.1108/LHS-06-2015-0018CrossRefGoogle Scholar
  23. Kajonius, P. J., & Carlander, A. (2017). Who gets ahead in life? Personality traits and childhood background in economic success. Journal of Economic Psychology, 59, 164–170.  https://doi.org/10.1016/j.joep.2017.03.004CrossRefGoogle Scholar
  24. Kajonius, P. J., & Kazemi, A. (2015). Safeness and treatment mitigate the effect of loneliness on satisfaction with elderly care. The Gerontologist, 56(6), 928–936.  https://doi.org/10.1093/geront/gnu170CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kajonius, P. J., & Mac Giolla, E. (2017). Personality across nations: Support for similarities rather than differences. PLoS One, 12(6), e0179646.  https://doi.org/10.1371/journal.pone.0179646CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kajonius, P. J., Persson, B. N., Rosenberg, P., & Garcia, D. (2016). The (mis)measurement of the Dark Triad Dirty Dozen: Exploitation at the core of the scale. PeerJ, 4, e1748.  https://doi.org/10.7717/peerj.1748CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kandler, C., & Zapko-Willmes, A. (2017). Genetic and environmental variance in personality characteristics. In J. Specht (Ed.), Personality development across the lifespan. New York, NY: Academic Press.Google Scholar
  28. Kazemi, A., & Kajonius, P. (2016). Variations in user-oriented elderly care: A multi-level approach. International Journal of Quality and Service Science, 29, 162.  https://doi.org/10.1108/IJHCQA-03-2015-0040CrossRefGoogle Scholar
  29. Kazemi, A., & Kajonius, P. J. (2015). User-oriented elderly care: A validation study in two different settings using observational data. Quality in Ageing and Older Adults, 16(3), 140–152.  https://doi.org/10.1108/QAOA-08-2014-0013CrossRefGoogle Scholar
  30. Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., … Eaton, N. R. (2017). The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to traditional nosologies. Journal of Abnormal Psychology, 126(4), 454.  https://doi.org/10.1037/abn0000258CrossRefGoogle Scholar
  31. Krueger, R. F. (2013). Personality disorders are the vanguard of the post-DSM-5.0 era. Personality Disorders, 4(4), 355–362.  https://doi.org/10.1037/per0000028CrossRefPubMedGoogle Scholar
  32. Krueger, R. F., & DeYoung, C. G. (2016). The RDoC initiative and the structure of psychopathology. Psychophysiology, 53, 351–354.  https://doi.org/10.1111/psyp.12551CrossRefPubMedGoogle Scholar
  33. Lilienfeld, S. O., & Treadway, M. T. (2016). Clashing diagnostic approaches: DSM-ICD versus RDoC. Annual Review of Clinical Psychology, 12(1), 435–463.  https://doi.org/10.1146/annurev-clinpsy-021815-093122CrossRefPubMedPubMedCentralGoogle Scholar
  34. Markon, K. E., Chmielewski, M., & Miller, C. J. (2011). The reliability and validity of discrete and continuous measures of psychopathology: A quantitative review. Psychological Bulletin, 137(5), 856–879.  https://doi.org/10.1037/a0023678CrossRefPubMedGoogle Scholar
  35. Markon, K. E., Krueger, R. F., & Watson, D. (2005). Delineating the structure of normal and abnormal personality: An integrative hierarchical approach. Journal of Personality and Social Psychology, 88(1), 139–157.  https://doi.org/10.1037/0022-3514.88.1.139CrossRefPubMedPubMedCentralGoogle Scholar
  36. Miller, J. D., Bagby, R. M., Pilkonis, P. A., Reynolds, S. K., & Lynam, D. R. (2005). A simplified technique for scoring DSM-IV personality disorders with the five-factor model. Assessment, 12(4), 404–415.  https://doi.org/10.1177/1073191105280987CrossRefPubMedGoogle Scholar
  37. Okbay, A., Baselmans, B. M. L., De Neve, J.-E., Turley, P., Nivard, M. G., Fontana, M. A., … Cesarini, D. (2016). Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics, 48, 1–13.  https://doi.org/10.1038/ng.3552CrossRefGoogle Scholar
  38. Persson, B. (2014). Personality neuroscience and dark values. Master’s thesis. University of Skövde Press, Skövde, Sweden.Google Scholar
  39. Persson, B., & Kajonius, P. (2016). Empathy and universal values explicated by the empathy-altruism hypothesis. The Journal of Social Psychology, 156(6), 610–619.  https://doi.org/10.1080/00224545.2016.1152212CrossRefPubMedGoogle Scholar
  40. Persson, B., & Kajonius, P. (2017). Methodological challenges in studying personality across multiple levels of explanation. In D. Garcia, T. Archer, & R. M. Kostrzewa (Eds.), Personality and brain disorders (p. 2017). New York, NY: Springer.Google Scholar
  41. Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2016). Top 10 replicated findings from behavioral genetics. Perspectives on Psychological Science, 11(1), 3–23.  https://doi.org/10.1177/1745691615617439CrossRefPubMedPubMedCentralGoogle Scholar
  42. Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702–709.  https://doi.org/10.1038/ng.3285CrossRefPubMedGoogle Scholar
  43. Sharma, S., Powers, A., Bradley, B., & Ressler, K. (2016). Gene x environment determinants of stress- and anxiety-related disorders. Annual Review of Psychology, 67(1), 239–261.  https://doi.org/10.1146/annurev-psych-122414-033408CrossRefPubMedGoogle Scholar
  44. Strachan, E., Duncan, G., Horn, E., & Turkheimer, E. (2016). Neighborhood deprivation and depression in adult twins: Genetics and gene×environment interaction. Psychological Medicine, 47, 627–638.  https://doi.org/10.1017/S0033291716002622CrossRefPubMedPubMedCentralGoogle Scholar
  45. Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., Mccarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 Years of GWAS discovery: Biology, function, and translation. The American Journal of Human Genetics, 101(1), 5–22.  https://doi.org/10.1016/j.ajhg.2017.06.005CrossRefPubMedGoogle Scholar
  46. Waszczuk, M. A., Kotov, R., Ruggero, C., Gamez, W., & Watson, D. (2017). Hierarchical structure of emotional disorders: From individual symptoms to the spectrum. Journal of Abnormal Psychology, 126(5), 613–634.  https://doi.org/10.1037/abn0000264CrossRefPubMedGoogle Scholar
  47. Weinberger, D. R., & Goldberg, T. E. (2014). RDoCs redux. World Psychiatry, 13(1), 36–38.  https://doi.org/10.1002/wps.20096CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wong, K. M., & Cloninger, C. R. (2010). A person-centered approach to clinical practice. Focus, 8(2), 199–215.  https://doi.org/10.1176/foc.8.2.foc199CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wright, A. G. C., & Simms, L. J. (2014). On the structure of personality disorder traits: Conjoint analyses of the CAT-PD, PID-5, and NEO-PI-3 trait models. Personality Disorders, 5(1), 43–54.  https://doi.org/10.1037/per0000037CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Cognitive NeuroscienceUniversity of SkövdeSkövdeSweden
  2. 2.Department of PsychologyUniversity of GothenburgGothenburgSweden
  3. 3.Department of Behavioral SciencesUniversity WestTrollhättanSweden

Personalised recommendations