• Hillary B. Liken
  • David A. KaufmanEmail author


Candida pathogenesis involves exposure, adherence, colonization, and ultimately infection. Measures can be applied for each of these four aspects to prevent infections and improve outcomes in those infected. Invasive Candida infections in the NICU most commonly include bloodstream and urinary tract infections, meningitis, peritonitis, and congenital cutaneous candidiasis. NICU patients are at increased risk for invasive Candida infections due to their developing immune system and catheters and tubes that breech important protective barriers. Extremely preterm infants represent the highest-risk patients in the NICU, and incidence is inversely proportional with gestational age. Many studies demonstrate rates of invasive candidiasis >20% in infants less than 25 weeks gestation and decreasing to around 5% in 27 weeks gestation infants.

Antifungal prophylaxis in high-risk patients is the most effective prevention measure and has been critically studied in randomized controlled trials. The highest-risk patients are infants <1000 g or < 28 weeks gestation, in whom infection is associated with high mortality and neurodevelopmental impairment. For the entire NICU, a prevention bundle should include (1) targeted antifungal prophylaxis in high-risk patients (e.g., infants <1000 g or < 28 weeks gestation), (2) infection control, (3) central line associated bloodstream infection (CLABSI) preventative practices, and (4) antibiotic, medication, and feeding stewardship.

Infectious morbidity and mortality can be improved by (1) starting appropriate antifungal dosing, (2) adding antifungals to empiric therapy in high-risk patients or when there is a high suspicion for fungal infection, (3) prompt central venous catheter removal when candidemia is present, (4) prompt recognition of dermatologic findings of congenital or postnatal cutaneous candidiasis and then evaluation and systemic treatment for 14 days, and (5) end-organ dissemination screening. Future prevention may involve lactoferrin, probiotics, antifungal prophylaxis in patients with complex gastrointestinal diseases, and broader antenatal screening and treatment of vaginal Candida colonization and candidiasis.


Candida Preterm infants Prevention Antifungals Antifungal prophylaxis 


  1. 1.
    Kaufman D, Fairchild KD. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin Microbiol Rev. 2004;17:638–80.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kaufman DA, Coggins SA, Zanelli SA, Weitkamp JH. Congenital cutaneous candidiasis: prompt systemic treatment is associated with improved outcomes in neonates. Clin Infect Dis. 2017;64(10):1387–95.CrossRefPubMedGoogle Scholar
  3. 3.
    Stoll BJ, Hansen N, Fanaroff AA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network. Pediatrics. 2002;110:285–91.CrossRefPubMedGoogle Scholar
  4. 4.
    Feja KN, Wu F, Roberts K, et al. Risk factors for candidemia in critically ill infants: a matched case-control study. J Pediatr. 2005;147:156–61.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Barton M, O’Brien K, Robinson JL, et al. Invasive candidiasis in low birth weight preterm infants: risk factors, clinical course and outcome in a prospective multicenter study of cases and their matched controls. BMC Infect Dis. 2014;14:327.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kaufman D, Boyle R, Hazen KC, Patrie JT, Robinson M, Donowitz LG. Fluconazole prophylaxis against fungal colonization and infection in preterm infants. N Engl J Med. 2001;345:1660–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Kaufman DA, Morris A, Gurka MJ, Kapik B, Hetherington S. Fluconazole prophylaxis in preterm infants: a multicenter case-controlled analysis of efficacy and safety. Early Hum Dev. 2014;90(Suppl 1):S87–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Swanson JR, Gurka MJ, Kaufman DA. Risk factors for invasive fungal infection in premature infants: enhancing a targeted prevention approach. J Pediatric Infect Dis Soc. 2014;3:49–56.CrossRefPubMedGoogle Scholar
  9. 9.
    Kaufman DA. Aiming for zero: preventing invasive candida infections in extremely preterm infants. NeoReviews. 2011;12:e381-e392.CrossRefGoogle Scholar
  10. 10.
    Benjamin DK Jr, Hudak ML, Duara S, et al. Effect of fluconazole prophylaxis on candidiasis and mortality in premature infants: a randomized clinical trial. JAMA. 2014;311:1742–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Weitkamp JH, Ozdas A, Lafleur B, Potts AL. Fluconazole prophylaxis for prevention of invasive fungal infections in targeted highest risk preterm infants limits drug exposure. J Perinatol. 2008;28(6):405–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Benjamin DK Jr, Stoll BJ, Gantz MG, et al. Neonatal candidiasis: epidemiology, risk factors, and clinical judgment. Pediatrics. 2010;126:e865–73.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Coates EW, Karlowicz MG, Croitoru DP, Buescher ES. Distinctive distribution of pathogens associated with peritonitis in neonates with focal intestinal perforation compared with necrotizing enterocolitis. Pediatrics. 2005;116:e241–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Fridkin SK, Kaufman D, Edwards JR, Shetty S, Horan T. Changing incidence of Candida bloodstream infections among NICU patients in the United States: 1995-2004. Pediatrics. 2006;117:1680–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Cotten CM, McDonald S, Stoll B, Goldberg RN, Poole K, Benjamin DK Jr. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics. 2006;118:717–22.CrossRefPubMedGoogle Scholar
  16. 16.
    Saiman L, Ludington E, Pfaller M, et al. Risk factors for candidemia in neonatal intensive care unit patients. The National Epidemiology of mycosis survey study group. Pediatr Infect Dis J. 2000;19:319–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Stoll BJ, Temprosa M, Tyson JE, et al. Dexamethasone therapy increases infection in very low birth weight infants. Pediatrics. 1999;104:e63.CrossRefPubMedGoogle Scholar
  18. 18.
    Botas CM, Kurlat I, Young SM, Sola A. Disseminated candidal infections and intravenous hydrocortisone in preterm infants. Pediatrics. 1995;95:883–7.PubMedGoogle Scholar
  19. 19.
    Watterberg KL, Gerdes JS, Cole CH, et al. Prophylaxis of early adrenal insufficiency to prevent bronchopulmonary dysplasia: a multicenter trial. Pediatrics. 2004;114:1649–57.CrossRefPubMedGoogle Scholar
  20. 20.
    Benjamin DK Jr, Stoll BJ, Fanaroff AA, et al. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics. 2006;117:84–92.CrossRefPubMedGoogle Scholar
  21. 21.
    Kaufman DA, Gurka MJ, Hazen KC, Boyle R, Robinson M, Grossman LB. Patterns of fungal colonization in preterm infants weighing less than 1000 grams at birth. Pediatr Infect Dis J. 2006;25:733–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Manzoni P, Stolfi I, Pugni L, et al. A multicenter, randomized trial of prophylactic fluconazole in preterm neonates. N Engl J Med. 2007;356:2483–95.CrossRefPubMedGoogle Scholar
  23. 23.
    Manzoni P, Farina D, Antonielli dE, Leonessa ML, Gomirato G, Arisio R. An association between anatomic site of Candida colonization and risk of invasive candidiasis exists also in preterm neonates in neonatal intensive care unit. Diagn Microbiol Infect Dis. 2006;56:459–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Manzoni P, Farina D, Leonessa M, et al. Risk factors for progression to invasive fungal infection in preterm neonates with fungal colonization. Pediatrics. 2006;118:2359–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Manzoni P, Farina D, Galletto P, et al. Type and number of sites colonized by fungi and risk of progression to invasive fungal infection in preterm neonates in neonatal intensive care unit. J Perinat Med. 2007;35:220–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Rowen JL, Rench MA, Kozinetz CA, Adams JM Jr, Baker CJ. Endotracheal colonization with Candida enhances risk of systemic candidiasis in very low birth weight neonates. J Pediatr. 1994;124:789–94.CrossRefPubMedGoogle Scholar
  27. 27.
    Benjamin DK Jr, Poole C, Steinbach WJ, Rowen JL, Walsh TJ. Neonatal candidemia and end-organ damage: a critical appraisal of the literature using meta-analytic techniques. Pediatrics. 2003;112:634–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Barton M, Shen A, O'Brien K, et al. Early-onset invasive candidiasis in extremely low birth weight infants: perinatal acquisition predicts poor outcome. Clin Infect Dis. 2017;64:921–7.PubMedGoogle Scholar
  29. 29.
    Chapman RL, Faix RG. Persistently positive cultures and outcome in invasive neonatal candidiasis. Pediatr Infect Dis J. 2000;19:822–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Noyola DE, Fernandez M, Moylett EH, Baker CJ. Ophthalmologic, visceral, and cardiac involvement in neonates with candidemia. Clin Infect Dis. 2001;32:1018–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Zaoutis TE, Heydon K, Localio R, Walsh TJ, Feudtner C. Outcomes attributable to neonatal candidiasis. Clin Infect Dis. 2007;44:1187–93.CrossRefPubMedGoogle Scholar
  32. 32.
    Greenberg RG, Benjamin DK Jr, Gantz MG, et al. Empiric antifungal therapy and outcomes in extremely low birth weight infants with invasive candidiasis. J Pediatr. 2012;161:264–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Healy CM, Campbell JR, Zaccaria E, Baker CJ. Fluconazole prophylaxis in extremely low birth weight neonates reduces invasive candidiasis mortality rates without emergence of fluconazole-resistant Candida species. Pediatrics. 2008;121:703–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Wynn JL, Tan S, Gantz MG, et al. Outcomes following candiduria in extremely low birth weight infants. Clin Infect Dis. 2012;54:331–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Guida JD, Kunig AM, Leef KH, McKenzie SE, Paul DA. Platelet count and sepsis in very low birth weight neonates: is there an organism-specific response? Pediatrics. 2003;111:1411–5.CrossRefPubMedGoogle Scholar
  36. 36.
    Cohen-Wolkowiez M, Smith PB, Mangum B, et al. Neonatal Candida meningitis: significance of cerebrospinal fluid parameters and blood cultures. J Perinatol. 2007;27:97–100.CrossRefPubMedGoogle Scholar
  37. 37.
    Garges HP, Moody MA, Cotten CM, et al. Neonatal meningitis: what is the correlation among cerebrospinal fluid cultures, blood cultures, and cerebrospinal fluid parameters? Pediatrics. 2006;117:1094–100.CrossRefPubMedGoogle Scholar
  38. 38.
    Vendettuoli V, Tana M, Tirone C, et al. The role of Candida surveillance cultures for identification of a preterm subpopulation at highest risk for invasive fungal infection. Pediatr Infect Dis J. 2008;27:1114–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Posteraro B, Sanguinetti M, Boccia S, et al. Early mannan detection in bronchoalveolar lavage fluid with preemptive treatment reduces the incidence of invasive Candida infections in preterm infants. Pediatr Infect Dis J. 2010;29:844–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Schelonka RL, Moser SA. Time to positive culture results in neonatal Candida septicemia. J Pediatr. 2003;142:564–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Goudjil S, Kongolo G, Dusol L, et al. (1-3)-beta-D-glucan levels in candidiasis infections in the critically ill neonate. J Matern Fetal Neonatal Med. 2013;26:44–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Cornu M, Goudjil S, Kongolo G, et al. Evaluation of the (1,3)-beta-D-glucan assay for the diagnosis of neonatal invasive yeast infections. Med Mycol. 2017;Google Scholar
  43. 43.
    Goudjil S, Chazal C, Moreau F, Leke A, Kongolo G, Chouaki T. Blood product transfusions are associated with an increase in serum (1-3)-beta-d-glucan in infants during the initial hospitalization in neonatal intensive care unit (NICU). J Matern Fetal Neonatal Med. 2016:1–5.Google Scholar
  44. 44.
    Tirodker UH, Nataro JP, Smith S, LasCasas L, Fairchild KD. Detection of fungemia by polymerase chain reaction in critically ill neonates and children. J Perinatol. 2003;23:117–22.CrossRefPubMedGoogle Scholar
  45. 45.
    Higareda-Almaraz MA, Loza-Barajas H, Maldonado-Gonzalez JG, Higareda-Almaraz E, Benitez-Godinez V, Murillo-Zamora E. Usefulness of direct fluorescent in buffy coat in the diagnosis of Candida sepsis in neonates. J Perinatol. 2016;36:874–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Friedman S, Richardson SE, Jacobs SE, O'Brien K. Systemic Candida infection in extremely low birth weight infants: short term morbidity and long term neurodevelopmental outcome. Pediatr Infect Dis J. 2000;19:499–504.CrossRefPubMedGoogle Scholar
  47. 47.
    Candidiasis. In: Kimberlin D, Brady M, Jackson M, Long SS, eds. Red Book: 2015 report of the committee on infectious diseases. 30th ed. Elk Grove Village, IL: American Academy of Pediatric; 2015, pp. 279–280.Google Scholar
  48. 48.
    Freydiere AM, Piens MA, Andre JM, Putet G, Picot S. Successful treatment of Candida glabrata peritonitis with fluconazole plus flucytosine in a premature infant following in vitro fertilization. Eur J Clin Microbiol Infect Dis. 2005;24:704–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Mendling W, Brasch J. Guideline vulvovaginal candidosis (2010) of the German Society for Gynecology and Obstetrics, the working Group for Infections and Infect immunology in Gynecology and obstetrics, the German Society of Dermatology, the Board of German Dermatologists and the German speaking mycological society. Mycoses. 2012;55(Suppl 3):1–13.CrossRefPubMedGoogle Scholar
  50. 50.
    Chitnis AS, Magill SS, Edwards JR, Chiller TM, Fridkin SK, Lessa FC. Trends in Candida central line-associated bloodstream infections among NICUs, 1999-2009. Pediatrics. 2012;130(1):e46–52.CrossRefPubMedGoogle Scholar
  51. 51.
    Fanaroff AA, Korones SB, Wright LL, et al. Incidence, presenting features, risk factors and significance of late onset septicemia in very low birth weight infants. The National Institute of Child Health and Human Development neonatal research network. Pediatr Infect Dis J. 1998;17:593–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Neonatology, Department of PediatricsUniversity of North Carolina School of MedicineChapel HillUSA
  2. 2.Division of Neonatology, Department of PediatricsUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations