Infrared Spectroscopy and Programmed Thermal Desorption of Ice Mixtures

  • Rafael Martín-DoménechEmail author
  • Guillermo M. Muñoz Caro
Part of the Astrophysics and Space Science Library book series (ASSL, volume 451)


In the coldest regions of the interstellar medium, ice mantles are accreted on the surface of dust grains. These ice mantles are detected by infrared telescopes, revealing their composition, structure, etc. This wouldn’t be possible without a proper characterization of ice analogs in laboratories under astrophysically relevant conditions. In this Chapter, we highlight the differences in the infrared features of the different components that are usually detected in interstellar ice mantles that arise when the spectrum of a pure ice is compared with the spectrum of an ice mixture. These differences are due to molecular interactions, and give us information on both the composition and the structure of the ice mantle. In addition, thermal processing of the ice mantles may induce structural changes that are also studied here. In space, thermal processing of the ice mantles during a star formation event ultimately leads to the sequential sublimation or desorption of the different ice components, leading to the formation of a chemically-rich hot core around the forming protostar. In the laboratory, this process can be also simulated, as it is explained by the end of the Chapter.


  1. Bar-Nun, A., Herman, G., Laufer, D.: Icarus. 63, 317 (1985)ADSCrossRefGoogle Scholar
  2. Bisschop, S.E., Fraser, H.J., Öberg, K.I., van Dishoeck, E.F., Schlemmer, S.: Astron. Astrophys. 449, 1297 (2006)ADSCrossRefGoogle Scholar
  3. Blake, D., Allamandola, L., Sandford, S., Hudgins, D., Freund, F.: Science. 254, 548 (1991)ADSCrossRefGoogle Scholar
  4. Boogert, A.C.A., Gerakines, P.A., Whittet, D.C.B.: Annu. Rev. Astron. Astrophys. 53, 541 (2015)ADSCrossRefGoogle Scholar
  5. Cazaux, S., Martín-Doménech, R., Chen, Y.-J., Muñoz Caro, G.M.: Astrophys. J. 849, 80 (2017)ADSCrossRefGoogle Scholar
  6. Collings, M.P., Dever, J.W., Fraser, H.J., McCoustra, M.R.: Astrophys. J. 583, 1058 (2003a)ADSCrossRefGoogle Scholar
  7. Collings, M.P., Dever, J.W., Fraser, H.J., McCoustra, M.R.: Astrophys. Space Sci. 385, 633 (2003b)ADSCrossRefGoogle Scholar
  8. Collings, M.P., Anderson, M.A., Chen, R., et al.: Mon. Not. R. Astron. Soc. 354, 1133 (2004)ADSCrossRefGoogle Scholar
  9. Cuppen, H.M., Penteado, E.M., Isokoski, K., et al.: Mon. Not. R. Astron. Soc. 417, 2809 (2011)ADSCrossRefGoogle Scholar
  10. d’Hendecourt, L.B., Allamandola, L.J.: Astron. Astrophys. Suppl. Ser. 64, 453 (1986)ADSGoogle Scholar
  11. Dartois, E., d’Hendecourt, L.B.: Astron. Astrophys. 365, 144 (2001)ADSCrossRefGoogle Scholar
  12. Dowell, L.G., Rinfert, A.P.: Nature. 188, 1144 (1960) ADSCrossRefGoogle Scholar
  13. Ehrenfreund, P., Kerkhof, O., Schutte, W.A., et al.: Astron. Astrophys. 350, 240 (1999)ADSGoogle Scholar
  14. Fayolle, E.C., Öberg, K.I., Cuppen, H.M., Visser, R., Linnartz, H.: Astrophys. J. 529, A74 (2011)Google Scholar
  15. Fayolle, E.C., Balfe, J., Loomis, R., et al.: Astrophys. J. Lett. 816, L28 (2016)ADSCrossRefGoogle Scholar
  16. Gerakines, P.A., Whittet, D.C.B., Ehrenfreund, P., et al.: Astrophys. J. 522, 357 (1999)ADSCrossRefGoogle Scholar
  17. Hagen, W., Tielens, A.G.G.M., Greenberg, J.M.: Astron. Astrophys. Suppl. Ser. 51, 389 (1983)ADSGoogle Scholar
  18. Isokoski, K., Ph.D. Thesis. (2013)Google Scholar
  19. Knacke, R.F., McCorkle, S.M.: Astron. J. 94, 972 (1987)ADSCrossRefGoogle Scholar
  20. Luna, R., Millan, C., Domingo, M., Santonja, C., Satorre, M.A.: Vacuum. 122, 154 (2015)ADSCrossRefGoogle Scholar
  21. Luna, R., Luna-Ferrandiz, R., Satorre, M.A., et al.: Astrophys. J. 852(1), 51 (2017)ADSCrossRefGoogle Scholar
  22. Martín-Doménech, R., Muñoz Caro, G.M., Bueno, J., Goesmann, F.: Astron. Astrophys. 564, A8 (2014)ADSCrossRefGoogle Scholar
  23. Muñoz Caro, G.M., Jiménez-Escobar, A., Martín-Gago, J.A., et al.: Astron. Astrophys. 522, A108 (2010)CrossRefGoogle Scholar
  24. Noble, J., Congiu, E., Dulieu, F., Fraser, H.J.: Mon. Not. R. Astron. Soc. 421, 768 (2012)ADSGoogle Scholar
  25. Notesco, G., Bar-Nun, A.: Icarus. 148, 456 (2000)Google Scholar
  26. Nummelin, A., Whittet, D.C.B., Gibb, E.L., Gerakines, P.A., Chiar, J.E.: Astrophys. J. 558, 185 (2001)ADSCrossRefGoogle Scholar
  27. Öberg, K.I., Fayolle, E.C., Cuppen, H.C., et al.: Astron. Astrophys. 505, 183 (2009)ADSCrossRefGoogle Scholar
  28. Polanyi, M., Wigner, E.Z.: Physik. 33, 429 (1925)CrossRefGoogle Scholar
  29. Pontoppidan, K.M., Boogert, A.C.A., Fraser, H., et al.: Astrophys. J. 678, 1005 (2008)ADSCrossRefGoogle Scholar
  30. Qi, C., Öberg, K.I., Wilner, D.J., et al.: Science. 341(6146), 630 (2013)ADSCrossRefGoogle Scholar
  31. Sandford, S.A., Allamandola, L.J.: Astrophys. J. 355, 357 (1990)ADSCrossRefGoogle Scholar
  32. Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M., Valero, G.J.: Astrophys. J. 329, 498 (1988)ADSCrossRefGoogle Scholar
  33. Smith, R.S., Huang, C., Wong, E.K.L., Kay, B.D.: Phys. Rev. Lett. 79, 909 (1997)ADSCrossRefGoogle Scholar
  34. Smith, R.S., May, R.A., Kay, B.D.: J. Phys. Chem. B. 120, 1979 (2016)CrossRefGoogle Scholar
  35. van Dishoeck, E.F.: Proc. Natl. Acad. Sci. 103, 12249 (2006)ADSCrossRefGoogle Scholar
  36. Viti, S., Collings, M.P., Dever, J.W., McCoustra, M.R.S.: Mon. Not. R. Astron. Soc. 354, 1141 (2004)ADSCrossRefGoogle Scholar
  37. Wakelam, V., Caselli, P., Ceccarelli, C., Herbs, E., Castets, A.: Astron. Astrophys. 422, 159 (2004)ADSCrossRefGoogle Scholar
  38. Zasowski, G., Kemper, F., Watson, D.M., et al.: Astrophys. J. 694, 459 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Rafael Martín-Doménech
    • 1
    Email author
  • Guillermo M. Muñoz Caro
    • 2
  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  2. 2.Centro de Astrobiología, INTA-CSIC, Torrejón de ArdozMadridSpain

Personalised recommendations