Infrared Optical Constants and Band Strengths of Ices

  • Belén MatéEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 451)


Infrared optical constants of ices allow us reproducing astrophysical observations of absorption, reflection or extinction infrared spectra of these species. They are also needed as input in some astrophysical models. Infrared band strengths provide a direct tool to quantify the composition of ices in astrophysical media. In this chapter we describe different experimental ways to obtain these magnitudes. They are based on infrared transmission absorption spectra of ice layers grown on infrared transparent substrates. The main approximations implicit in the procedures are reviewed.


  1. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders Company, Philadelphia, PA (1976)zbMATHGoogle Scholar
  2. Boogert, A.C.A., Gerakines, P.A., Whittet, D.C.B.: Annu. Rev. Astron. Astrophys. 53, 541–481 (2015)ADSCrossRefGoogle Scholar
  3. Bossa, J.-B., Maté, B., Fransen, C., Cazaux, S., Pilling, S., Rocha, W.R.M., Ortigoso, J., Linnartz, H.: Astrophys. J. 814, 47 (2015)ADSCrossRefGoogle Scholar
  4. Decius, J., Hexter, R.M.: Molecular Vibration in Crystals. McGraw-Hill, New York (1977)Google Scholar
  5. Fernández-Torre, D.: Estudio teórico de sistemas de relevancia atmosférica: espectroscopía infrarroja de cristales de ácido nítrico y sus hidratos. PhD Thesis, Universidad Complutense, Madrid (2005).Google Scholar
  6. Gibb, E.L., Whittet, D.C.B., Boogert, A.C.A., Tielens, A.G.G.M.: Astrophys. J. Suppl. Ser. 151(1), 25–73 (2004)ADSCrossRefGoogle Scholar
  7. Heavens, O.S.: Optical Properties of Thin Solid Films. Butterworth Scientific, London (1995)Google Scholar
  8. Hudgins, D.M., Sandford, S.A., Allamandola, L.J., Tielens, A.G.G.M.: Astrophys. J. Suppl. Ser. 86, 713–870 (1993)ADSCrossRefGoogle Scholar
  9. Hudson, R.L., Ferrante, R.F., Moore, M.H.: Icarus. 228, 276–287 (2014)ADSCrossRefGoogle Scholar
  10. Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1953)zbMATHGoogle Scholar
  11. Mastrapa, R.M., Sandford, S.A., Roush, T.L., Cruikshank, D.P., Dalle Ore, C.M.: Optical constants of amorphous and crystalline H2O-ice:2.5–22 μm (4000–455 cm−1). Astrophys. J. 701, 1347–1356 (2009)ADSCrossRefGoogle Scholar
  12. Molpeceres, G., Satorre, M.A., Ortigoso, J., Millán, C., Escribano, R., Maté, B.: Astrophys. J. 825(156), 12 (2016)Google Scholar
  13. Toon, O.B., Tolbert, M.A., Koehler, B.G., Middlebrook, A.M., Jordan, J.: Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates. J. Geophys. Res. Atmos. 99, 25631 (1994)ADSCrossRefGoogle Scholar
  14. Verleur, H.W.: J. Opt. Soc. Am. 58, 1356 (1968)ADSCrossRefGoogle Scholar
  15. Wood, B.E., Roux, J.A.: Infrared optical properties of thin H2O, NH3, and CO2 cryofilms. J. Opt. Soc. Am. 72, 720 (1982)ADSCrossRefGoogle Scholar
  16. Zanchet, A., Rodríguez-Lazcano, Y., Gálvez, Ó., Herrero, V.J., Escribano, R., Maté, B.: Optical constants of NH3 and NH3:N2 amorphous ices in the Near-Infrared and Mid infrared regions. Astrophys. J. 777(26), 11 (2013)ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Estructura de la Materia, IEM-CSICMadridSpain

Personalised recommendations