Density of Ices of Astrophysical Interest

  • Miguel Ángel SatorreEmail author
  • Ramón Luna
  • Carlos Millán
  • Manuel Domingo
  • Carmina Santonja
Part of the Astrophysics and Space Science Library book series (ASSL, volume 451)


Density plays an important role in the understanding of chemical and physical evolution of ices in space. It is related with abundances, energetic processing, porosity, buoyancy, etc.

The experimental values available are scarce and, often, corresponding to ices without pores (bulk density) despite many experiments devoted to astrophysics form porous ices. Additionally, ice density frequently depends on the formation temperature, and these studies are even scarcer.

In this chapter, bulk and average density are defined, and experimental methods to determine both densities are reviewed. Ice density values are presented covering from the lighter to the denser ones. The relationship between density and ice structure is exemplified. The examples cover temperature phase transitions, amorphous and crystalline structures. The possibility to detect metastable crystalline structures is also proposed. The case of ice mixtures is presented to warning about the impossibility to obtain density values from those of the pure constituents. Finally, ice porosity experimentally obtained is tabulated to reveal that high density ices (>1 g cm−3) can be as porous as low density ices (<0.5 g cm−3).



The authors thank the Ministerio de Economía y Competitividad that funded this research, with grants FIS2013-48087-C2-2-P, FIS2016-77726-C3-3-P and AYA2015-71975-REDT.


  1. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge University, Cambridge (1999)CrossRefGoogle Scholar
  2. Brunetto, R., et al.: Astrophys. J. 686, 1480 (2008)ADSCrossRefGoogle Scholar
  3. Collings, M.P., et al.: MNRAS 354, 1133 (2004)Google Scholar
  4. Dawes, A., et al.: J. Chem. Phys. 126, 244711 (2007)ADSCrossRefGoogle Scholar
  5. Fulvio, D., et al.: Spectrochim. Acta A. 72, 1007 (2009)ADSCrossRefGoogle Scholar
  6. Ghormley, J.A., Hochanadel, C.J.: Science. 171, 62 (1971)ADSCrossRefGoogle Scholar
  7. Hudson, R.L., et al.: Icarus. 243, 148 (2014)ADSCrossRefGoogle Scholar
  8. Isokoski, K., et al.: Phys. Chem. Chem. Phys. 16, 3456 (2014)CrossRefGoogle Scholar
  9. Jenniskens, P., Blake, D.F.: Astrophys. J. 473, 1104 (1996)ADSCrossRefGoogle Scholar
  10. Kouchi, A., et al.: Astrophys. J. 388, L73 (1992)ADSCrossRefGoogle Scholar
  11. Kouchi, A., et al.: Chem. Phys. Lett. 658, 287 (2016)ADSCrossRefGoogle Scholar
  12. Labello, J.M.: Ph.D. Dissertation, University of Tennessee (2011)Google Scholar
  13. Loeffler, M.J., et al.: Astrophys. J. 827, 98 (2016)ADSCrossRefGoogle Scholar
  14. Luna, R., et al.: Vacuum. 86, 1969 (2012a)ADSCrossRefGoogle Scholar
  15. Luna, R., et al.: Icarus. 221, 186 (2012b)ADSCrossRefGoogle Scholar
  16. Manzhelii, V.G., Tolkachev, A.M.: Sov. Phys. Solid State. 5, 2506 (1964)Google Scholar
  17. Molpeceres, G., et al.: Astrophys. J. 825, 156 (2016)ADSCrossRefGoogle Scholar
  18. Olovsson, I., Templeton, D.H.: Acta Crystallogr. 12, 832 (1959)CrossRefGoogle Scholar
  19. Pipes, J.G., et al.: AIAA J. 16, 984 (1978)ADSCrossRefGoogle Scholar
  20. Roe, H.G., Grundy, W.M.: Icarus. 219, 733 (2012)ADSCrossRefGoogle Scholar
  21. Romanescu, C., et al.: Icarus. 205, 695 (2010)ADSCrossRefGoogle Scholar
  22. Satorre, M.Á., et al.: Planet. Space Sci. 56, 1748 (2008)ADSCrossRefGoogle Scholar
  23. Satorre, M.A., et al.: Planet. Space Sci. 57, 250 (2009)ADSCrossRefGoogle Scholar
  24. Satorre, M.Á., et al.: Icarus 225, 703 (2013)ADSCrossRefGoogle Scholar
  25. Satorre, M.Á., et al.: Icarus 296, 179 (2017)ADSCrossRefGoogle Scholar
  26. Schulze, W., Abe, H.: Chem. Phys. 52, 381 (1980)CrossRefGoogle Scholar
  27. van Nes, G.J.H.: Ph.D. Thesis, University of Groningen (1978)Google Scholar
  28. Wisnosky, M.G., et al.: J. Chem. Phys. 79, 3513 (1983)ADSCrossRefGoogle Scholar
  29. Wood, B.E., Roux, J.A.: J. Opt. Soc. Am. 72, 720 (1982)ADSCrossRefGoogle Scholar
  30. Zheng, W., Kaiser, R.: Chem. Phys. Lett. 440, 229 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Miguel Ángel Satorre
    • 1
    Email author
  • Ramón Luna
    • 1
  • Carlos Millán
    • 1
  • Manuel Domingo
    • 1
  • Carmina Santonja
    • 1
  1. 1.Escuela Técnica Superior de Ingenieros Industriales, Centro de Tecnologías Físicas, Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations