Icy Grains in the Solar System: Cometary and Asteroidal Environments

  • Fernando MorenoEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 451)


Icy grains have been directly detected or inferred in the circumnuclear region of various short- and long-period comets. In particular, comets 103P/Hartley 2, C/2002 T7 (LINEAR), and, recently C/2013 OS10 (Catalina) and 67P/Churyumov–Gerasimenko have been found to eject dust particles with a variable proportion of ice content. In this chapter, we report on the theoretical computation of the equilibrium temperature of sublimating grains composed by a varying amount of water ice, silicate, and carbon materials, and its variation with grain size and heliocentric distance. It is shown that even a small addition of absorbing impurities to a pure water ice grain reduces dramatically its survival. A particular application to comet 67P, the ESA Rosetta Mission target, is provided.


  1. A’Hearn, M., et al.: Astrophys. J. 89, 579 (1984)Google Scholar
  2. Aspens, D.E.: Am. J. Phys. 50, 704 (1982)ADSCrossRefGoogle Scholar
  3. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles. Wiley, New York (1983)Google Scholar
  4. Brent, R.P.: Algorithms for Minimization Without Derivatives. Prentice-Hall, Englewoods Cliffs, NJ (1973)zbMATHGoogle Scholar
  5. Combi, M., et al.: Icarus. 225, 740 (2013)ADSCrossRefGoogle Scholar
  6. Cox, A.N.: Allen’s Astrophysical Quantities, 4th edn. Springer, New York (2000)Google Scholar
  7. Cremonese, G., et al.: Astron. Astrophys. 588, 59 (2016)CrossRefGoogle Scholar
  8. Edoh, O.: Optical constants of carbon from the far infrared to the far ultraviolet. Ph.D. Thesis, University of Arizona (1983)Google Scholar
  9. Fulle, M., et al.: Astrophys. J. 821, 19 (2016)ADSCrossRefGoogle Scholar
  10. Gicquel, A., et al.: Astron. Astrophys. 542, A119 (2012)CrossRefGoogle Scholar
  11. Hartmann, W.K., Cruikshank, D.P.: Icarus. 57, 55 (1984)ADSCrossRefGoogle Scholar
  12. Jäger, C., et al.: Astron. Astrophys. 408, 193 (2003)ADSCrossRefGoogle Scholar
  13. Jewitt, D., et al.: Astrophys. J. 784, L8 (2014)ADSCrossRefGoogle Scholar
  14. Jewitt, D., et al.: The active asteroids. In: Michel, P., DeMeo, F., Bottke, W.F. (eds.) Asteroids IV, pp. 221–242. University of Arizona, Tucson, AZ (2015)Google Scholar
  15. Kelley, K.K.: US Bur. Mines Rep. Invest. 383, 35 (1935) Google Scholar
  16. Lamy, P.L.: Astron. Astrophys. 35, 197 (1974)ADSGoogle Scholar
  17. Léger, A., et al.: Astron. Astrophys. 117, 164 (1983)ADSGoogle Scholar
  18. Maxwell-Garnett, J.C.: Philos. Trans. R. Soc. A. 203, 385 (1904)ADSCrossRefGoogle Scholar
  19. Moreno, F., et al.: Astrophys. J. 738, 130 (2011)ADSCrossRefGoogle Scholar
  20. Moreno, F., et al.: Astrophys. J. 752, 136 (2012)ADSCrossRefGoogle Scholar
  21. Mukai, T.: Astron. Astrophys. 164, 397 (1986)ADSGoogle Scholar
  22. Mukai, T., et al.: Icarus. 80, 254 (1989)ADSCrossRefGoogle Scholar
  23. Murphy, D.M., Koop, T.: Q. J. R. Meteorol. Soc. 131, 1539 (2005)ADSCrossRefGoogle Scholar
  24. Press, W.H., et al.: Numerical Recipes in FORTRAN. Cambridge University, Cambridge (1992)zbMATHGoogle Scholar
  25. Protopapa, S., et al.: Icarus. 238, 191 (2014)ADSCrossRefGoogle Scholar
  26. Schulz, R., et al.: Nature. 518, 216 (2015)ADSCrossRefGoogle Scholar
  27. Sekanina, Z., Farrell, J.A.: Astron. J. 85, 1538 (1980)ADSCrossRefGoogle Scholar
  28. Steckloff, J.K., Jacobson, S.A.: Icarus. 264, 160 (2016)ADSCrossRefGoogle Scholar
  29. Warren, S.G.: Appl. Opt. 23, 1206 (1984)ADSCrossRefGoogle Scholar
  30. Washburn, E.W.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, vol. III. McGraw-Hill, New York (1928)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Astrofísica de Andalucía, CSICGranadaSpain

Personalised recommendations