Advertisement

Interstellar Chemical Models

  • Marcelino Agúndez
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 451)

Abstract

Interstellar clouds are harsh environments exposed to a energetic radiation, where the survival of molecules does not seem favorable. However, molecules are found in many different types of interstellar clouds. The study of molecules has a twofold interest. On the one hand, they serve as excellent tools to characterize the physical conditions prevailing in the clouds, and on the other, knowing how molecules are synthesized and why different environments host different types of molecules allows to understand the chemical evolution that matter experiences along the process in which stars and planets form. For this latter purpose, chemical models are an essential tool. This chapter provides the fundaments to build a chemical model of an interstellar cloud, describes which are the basic physical and chemical data needed to feed the model, and briefly discuss how these models assist in the interpretation of astronomical observations of molecules.

References

  1. Agúndez, M., Wakelam, V.: Chem. Rev. 113, 8710 (2013)CrossRefGoogle Scholar
  2. Aikawa, Y., Miyama, S.M., Nakano, T., Umebayashi, T.: Astrophys. J. 467, 684 (1996)ADSCrossRefGoogle Scholar
  3. Andersson, S., van Dishoeck, E.F.: Astron. Astrophys. 491, 907 (2008)ADSCrossRefGoogle Scholar
  4. Bates, D.R.: Phys. Rev. 78, 492 (1950)ADSCrossRefGoogle Scholar
  5. Bertin, M., Fayolle, E.C., Romanzin, C., et al.: Phys. Chem. Chem. Phys. 14, 9929 (2012)CrossRefGoogle Scholar
  6. Bertin, M., Fayolle, E.C., Romanzin, C., et al.: Astrophys. J. 779, 120 (2013)ADSCrossRefGoogle Scholar
  7. Bohlin, R.C., Savage, B.D., Drake, J.F.: Astrophys. J. 224, 132 (1978)ADSCrossRefGoogle Scholar
  8. Cuppen, H.M., Karssemeijer, L.J., Lamberts, T.: Chem. Rev. 113, 8840 (2013)CrossRefGoogle Scholar
  9. Cuppen, H.M., Walsh, C., Lamberts, T., et al.: Space Sci. Rev. 212, 1 (2017)ADSCrossRefGoogle Scholar
  10. Dalgarno, A.: Proc. Natl. Acad. Sci. U.S.A. 103, 12269 (2006)ADSCrossRefGoogle Scholar
  11. Draine, B.T.: Astrophys. J. Suppl. Ser. 36, 595 (1978)ADSCrossRefGoogle Scholar
  12. Fillion, J.-H., Fayolle, E.C., Michaut, X., et al.: Faraday Discuss. 168, 533 (2014)ADSCrossRefGoogle Scholar
  13. Garrod, R.T., Wakelam, V., Herbst, E.: Astron. Astrophys. 467, 1103 (2007)ADSCrossRefGoogle Scholar
  14. Gerlich, D., Horning, S.: Chem. Rev. 92, 1509 (1992)ADSCrossRefGoogle Scholar
  15. Gredel, R., Lepp, S., Dalgarno, A., Herbst, E.: Astrophys. J. 347, 289 (1989)ADSCrossRefGoogle Scholar
  16. Hasegawa, T.I., Herbst, E.: Mon. Not. R. Astron. Soc. 261, 83 (1993)ADSCrossRefGoogle Scholar
  17. Hasegawa, T.I., Herbst, E., Leung, C.M.: Astrophys. J. Suppl. Ser. 82, 167 (1992)ADSCrossRefGoogle Scholar
  18. Herbst, E., van Dishoeck, E.F.: Annu. Rev. Astron. Astrophys. 47, 427 (2009)ADSCrossRefGoogle Scholar
  19. Herbst, E., Yates Jr., J.T.: Chem. Rev. 113, 8707 (2013)CrossRefGoogle Scholar
  20. Hollenbach, D.J., Tielens, A.G.G.M.: Annu. Rev. Astron. Astrophys. 35, 179 (1997)ADSCrossRefGoogle Scholar
  21. Martín-Doménech, R., Muñoz Caro, G.M., Cruz-Díaz, G.A.: Astron. Astrophys. 589, A107 (2016)ADSCrossRefGoogle Scholar
  22. Mathis, J.S., Rumpl, W., Nordsieck, K.H.: Astrophys. J. 217, 425 (1977)ADSCrossRefGoogle Scholar
  23. McElroy, D., Walsh, C., Markwick, A.J., et al.: Astron. Astrophys. 550, A36 (2013)CrossRefGoogle Scholar
  24. Minissale, M., Dulieu, F., Cazaux, S., Hocuk, S.: Astron. Astrophys. 585, A24 (2016)ADSCrossRefGoogle Scholar
  25. Muñoz Caro, G.M., Jiménez-Escobar, A., Martín-Gago, J.A., et al.: Astron. Astrophys. 552, A108 (2010)CrossRefGoogle Scholar
  26. Noble, J.A., Congiu, E., Dulieu, F., Fraser, H.J.: Mon. Not. R. Astron. Soc. 421, 768 (2012)ADSGoogle Scholar
  27. Padovani, M., Galli, D., Glassgold, A.E.: Astron. Astrophys. 501, 619 (2009)ADSCrossRefGoogle Scholar
  28. Shannon, R.J., Blitz, M.A., Goddard, A., et al.: Nat. Chem. 5, 745 (2013)CrossRefGoogle Scholar
  29. Smith, I.W.M.: Angew. Chem. Int. Ed. 45, 2842 (2006)CrossRefGoogle Scholar
  30. Snow, T.P., McCall, B.J.: Annu. Rev. Astron. Astrophys. 44, 367 (2006)ADSCrossRefGoogle Scholar
  31. van Dishoeck, E.F.: In: Millar, T.J., Williams, D.A. (eds.) Rate Coefficients in Astrochemistry, p. 49. Kluwer Academic, Dordrecht (1988)CrossRefGoogle Scholar
  32. Wakelam, V., Smith, I.W.M., Herbst, E., et al.: Space Sci. Rev. 156, 13 (2010)ADSCrossRefGoogle Scholar
  33. Woitke, P., Kamp, I., Thi, W.-F.: Astron. Astrophys. 501, 383 (2009)ADSCrossRefGoogle Scholar
  34. Zanchet, A., del Mazo, P., Aguado, A., et al.: Phys. Chem. Chem. Phys. 20, 8 (2018)  https://doi.org/10.1039/c7cp05307j CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Física Fundamental, CSICMadridSpain

Personalised recommendations