Infrared Spectroscopy of Ions of Astrophysical Interest

  • José-Luis DoménechEmail author
Part of the Astrophysics and Space Science Library book series (ASSL, volume 451)


Molecular ions are key species in the chemistry of the interstellar medium (ISM). Given the low temperatures and number densities typically occurring in the ISM, one of the few available mechanisms to form more complex molecules is through barrierless exothermic reactions, as it is the case for many ion-molecule reactions. Ions are highly reactive species but they can be formed efficiently in the ISM by cosmic-ray or ultraviolet ionization and can survive for relatively long times due to the few collisions they suffer. On earth, molecular ions are “exotic” species much more difficult to produce in appreciable quantities. Electrical discharges in low pressure gases form cold plasmas which can be used to produce molecular ions in abundances high enough to enable their spectroscopic study.



The work carried out at the laboratories of the Molecular Physics Department of IEM- CSIC has been partially funded by Spanish MINECO through grants CSD2009-00038 (Consolider Astromol project), FIS2012-38175, FIS2013-408087-C2-1P and FIS2016-77726-C3-1P. Additional partial support has been received from the European Research Council through the Synergy Grant ERC-2013-SyG-610256 NANOCOSMOS. Dr. O. Asvany and the support for a research stay at the University of Cologne by the Deutsche Forschungsgemeinschaft via SFB 956 project B2 are most gratefully acknowledged.


  1. Adams, D.: The Hitchhicker’s Guide to the Galaxy. Pan Books, London (1979)Google Scholar
  2. Asvany, O.: Understanding the infrared spectrum of bare CH\(_5^+\). Science 309(5738), 1219–1222 (2005). ADSCrossRefGoogle Scholar
  3. Asvany, O., Krieg, J., Schlemmer, S.: Frequency comb assisted mid-infrared spectroscopy of cold molecular ions. Rev. Sci. Instrum. 83(9), 093110 (2012). ADSCrossRefGoogle Scholar
  4. Asvany, O., Brünken, S., Kluge, L., Schlemmer, S.: COLTRAP: a 22-pole ion trapping machine for spectroscopy at 4 K. Appl. Phys. B 114(1–2), 203–211 (2014). ADSCrossRefGoogle Scholar
  5. Berden, G., Engeln, R. (eds.): (2009) Cavity Ring-Down Spectroscopy: Techniques and Applications. Wiley, Chichester. Google Scholar
  6. Black, J.H., Hartquist, T.W., Dalgarno, A.: Models of interstellar clouds. II - the Zeta Persei cloud. Astrophys. J. 224, 448 (1978). ADSCrossRefGoogle Scholar
  7. Carrington, A., Softley, T.P.: High-resolution infrared spectroscopy of molecular ions. In: Miller, T.A., Bondybey, V.E. (eds.) Molecular Ions: Spectroscopy, Structure and Chemistry, pp. 49–72. North-Holland, Amsterdam (1983)Google Scholar
  8. Cernicharo, J., Tercero, B., Fuente, A., Domenech, J.L., Cueto, M., Carrasco, E., Herrero, V.J., Tanarro, I., Marcelino, N., Roueff, E., Gerin, M., Pearson, J.: Detection of the ammonium ion in space. Astrophys. J. 771(1), L10 (2013). ADSCrossRefGoogle Scholar
  9. Cheung, A.C., Rank, D.M., Townes, C.H., Thornton, D.D., Welch, W.J.: Detection of NH3 molecules in the interstellar medium by their microwave emission. Phys. Rev. Lett. 21(25), 1701–1705 (1968). ADSCrossRefGoogle Scholar
  10. Crabtree, K.N., Kauffman, C.A., McCall, B.J.: Note: A modular and robust continuous supersonic expansion discharge source. Rev. Sci. Instrum. 81(8), 086103 (2010). ADSCrossRefGoogle Scholar
  11. Davis, S., Fárnk, M., Uy, D., Nesbitt, D.J.: Concentration modulation spectroscopy with a pulsed slit supersonic discharge expansion source. Chem. Phys. Lett. 344(1-2), 23–30 (2001). ADSCrossRefGoogle Scholar
  12. De Lucia, F.C., Herbst, E.: The production of large concentrations of molecular ions in the lengthened negative glow region of a discharge. J. Chem. Phys. 78(5), 2312 (1983). ADSCrossRefGoogle Scholar
  13. Doménech, J.L., Cueto, M., Herrero, V.J., Tanarro, I., Tercero, B., Fuente, A., Cernicharo, J.: Improved determination of the 10 − 00 rotational frequency of NH3D+ from the high-resolution spectrum of the ν 4 infrared band. Astrophys. J. 771(1), L11 (2013). ADSCrossRefGoogle Scholar
  14. Doménech, J.L., Schlemmer, S., Asvany, O.: Accurate frequency determination of vibration-rotation and rotational transitions of SiH+. Astrophys. J. 849(1), 60 (2017). ADSCrossRefGoogle Scholar
  15. Doménech, J.L., Jusko, P., Schlemmer, S., Asvany, O.: The First laboratory detection of vibration-rotation transitions of 12CH+ and 13CH+ and improved measurement of their rotational transition frequencies. Astrophys. J. 857, 61 (2018). ADSCrossRefGoogle Scholar
  16. Drever, R.W.P., Hall, J.L., Kowalski, F.V., Hough, J., Ford, G.M., Munley, A.J., Ward, H.: Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B Photophysics. Laser Chem. 31(2), 97–105 (1983). ADSCrossRefGoogle Scholar
  17. Eddington, A.S.: Bakerian lecture. Diffuse matter in interstellar space. Proc. R. Soc. London Ser. A Contain. Pap. Math. Phys. Character A111, 424–456 (1926)CrossRefGoogle Scholar
  18. Foster, S.C., McKellar, A.R.W.: The ν 3 fundamental bands of HN\(_2^+\), DN\(_2^+\), and DCO+. J. Chem. Phys. 81(8), 3424–3428 (1984). ADSCrossRefGoogle Scholar
  19. Fridman, A.: Plasma Chemistry. Cambridge University Press, Cambridge (2008).
  20. Gerlich, D.: Ion-neutral collisions in a 22-pole trap at very low energies. Phys. Scr. T59, 256–263 (1995). ADSCrossRefGoogle Scholar
  21. Gudeman, C.S., Begemann, M.H., Pfaff, J., Saykally, R.J.: Velocity-modulated infrared laser spectroscopy of molecular ions: the ν 1 band of HCO+. Phys. Rev. Lett. 50(10), 727–731 (1983). ADSCrossRefGoogle Scholar
  22. Herbst, E., Klemperer, W.: The formation and depletion of molecules in dense interstellar clouds. Astrophys. J. 185, 505 (1973). ADSCrossRefGoogle Scholar
  23. Herzberg, G.: The interplay of molecular spectroscopy and astronomy. Highlights Astron. 5, 3–26 (1980). ADSCrossRefGoogle Scholar
  24. Hodges, J.N., Perry, A.J., Jenkins, P.A., Siller, B.M., McCall, B.J.: High-precision and high-accuracy rovibrational spectroscopy of molecular ions. J. Chem. Phys. 139(16):164201 (2013). ADSCrossRefGoogle Scholar
  25. Hollenbach, D., Salpeter, E.E.: Surface recombination of hydrogen molecules. Astrophys. J. 163, 155 (1971). ADSCrossRefGoogle Scholar
  26. Kawaguchi, K., Yamada, C., Saito, S., Hirota, E.: Magnetic field modulated infrared laser spectroscopy of molecular ions: the ν 2 band of HCO+. J. Chem. Phys. 82(4), 1750 (1985). ADSCrossRefGoogle Scholar
  27. Kroto, H.W.: The spectra of interstellar molecules. Int. Rev. Phys. Chem. 1(3), 309–376 (1981). CrossRefGoogle Scholar
  28. Lindsay, C.M.: Highly-sensitive and efficient infrared spectroscopy of molecular ions. PhD thesis, Chicago (2002)Google Scholar
  29. Menten, K.M., Wyrowski, F.: Molecules detected in interstellar space. In: Yamada, K., Winnewisser, G. (eds.) Interstellar Molecules, pp. 27–42. Springer, Berlin (2011). CrossRefGoogle Scholar
  30. Millar, T.J., Walsh, C., Field, T.A.: Negative ions in space. Chem. Rev. 117(3), 1765–1795 (2017). CrossRefGoogle Scholar
  31. Müller, H.S., Schlöder, F., Stutzki, J., Winnewisser, G.: The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J Mol Struct 742(1–3):215–227 (2005). Google Scholar
  32. Müller, H.S.P., Thorwirth, S., Roth, D.A., Winnewisser, G.: The Cologne Database for Molecular Spectroscopy, CDMS. Astron. Astrophys. 370(3), L49–L52 (2001). ADSCrossRefGoogle Scholar
  33. Nakanaga, T., Amano, T.: Difference-frequency laser spectroscopy of the ν 4 fundamental band of NH3D+. Can. J. Phys. 64, 1356–1358 (1986)ADSCrossRefGoogle Scholar
  34. Oka, T.: Observation of the infrared spectrum of H\(_3^+\). Phys. Rev. Lett. 45(7), 531 (1980)ADSCrossRefGoogle Scholar
  35. Piel, A.: Plasma Physics. Springer, Berlin (2010). CrossRefGoogle Scholar
  36. Pilbratt, G.L., Riedinger, J.R., Passvogel, T., Crone, G., Doyle, D., Gageur, U., Heras, A.M., Jewell, C., Metcalfe, L., Ott, S., Schmidt, M.: Herschel space observatory. Astron. Astrophys. 518, L1 (2010). ADSCrossRefGoogle Scholar
  37. Pine, A.S.: Doppler-limited molecular spectroscopy by difference-frequency mixing. J. Opt. Soc. Am. 64(12), 1683–1690 (1974)ADSCrossRefGoogle Scholar
  38. Pine, A.S.: High-resolution methane ν 3-band spectra using a stabilized tunable difference-frequency laser system. J. Opt. Soc. Am. 66(2), 97–108 (1976)ADSCrossRefGoogle Scholar
  39. Quinn, T.J.: Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia 40, 103–133 (2003)ADSCrossRefGoogle Scholar
  40. Saykally, R.J., Evenson, K.M.: Observation of pure rotational transitions in the HBr+ molecular ion by laser magnetic resonance. Phys. Rev. Lett. 43(7), 515–518 (1979). ADSCrossRefGoogle Scholar
  41. Schlemmer, S., Lescop, E., von Richthofen, J., Gerlich, D., Smith, M.A.: Laser induced reactions in a 22-pole ion trap: C2H\(_2^+\)+hν 3+H2 →C2H\(_3^+\)+H. J. Chem. Phys. 117(5), 2068–2075 (2002). ADSCrossRefGoogle Scholar
  42. Snow, T.P., Bierbaum, V.M.: Ion chemistry in the interstellar medium. Annu. Rev. Anal. Chem. 1:229–59 (2008). CrossRefGoogle Scholar
  43. Snow, T.P., McCall, B.J.: Diffuse atomic and molecular clouds. Annu. Rev. Astron. Astrophys. 44(1), 367–414 (2006). ADSCrossRefGoogle Scholar
  44. Stephenson, S.K., Saykally, R.J.: Velocity modulation spectroscopy of ions. Chem. Rev. 105(9), 3220–3234 (2005). CrossRefGoogle Scholar
  45. Stoffels, A., Kluge, L., Schlemmer, S., Brünken, S.: Laboratory rotational ground state transitions of NH3D+ and CF+. Astron. Astrophys. 56, 1–7 (2016). Google Scholar
  46. Talicska, C.N., Porambo, M.W., Perry, A.J., McCall, B.J.: Mid-infrared concentration-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy of a continuous supersonic expansion discharge source. Rev. Sci. Instrum. 87(6), 063111 (2016). ADSCrossRefGoogle Scholar
  47. Tercero, B., Cernicharo, J., Pardo, J.R., Goicoechea, J.R.: A line confusion limited millimeter survey of Orion KL I. Sulfur carbon chains. Astron. Astrophys. 517, A96 (2010). ADSCrossRefGoogle Scholar
  48. Tercero, B., Vincent, L., Cernicharo, J., Viti, S., Marcelino, N.: A line-confusion limited millimeter survey of Orion KL. Astron. Astrophys. 528, A26 (2011). ADSCrossRefGoogle Scholar
  49. Tielens, A.G.G.M., Hagen, W.: Model calculations of the molecular composition of interstellar grain mantles. Astron. Astrophys. 114:245–260 (1982).
  50. Verbraak, H., Ngai, A., Persijn, S., Harren, F., Linnartz, H.: Mid-infrared continuous wave cavity ring down spectroscopy of molecular ions using an optical parametric oscillator. Chem. Phys. Lett. 442(1–3), 145–149 (2007). ADSCrossRefGoogle Scholar
  51. Watson, W.D.: The rate of formation of interstellar molecules by ion-molecule reactions. Astrophys. J. 183, L17 (1973). ADSCrossRefGoogle Scholar
  52. Weinreb, S., Barett, A.H., Meeks, M.L., Henry, J.C.: Radio observations of OH in the interstellar medium. Nature 200(4909), 829–831 (1963). ADSCrossRefGoogle Scholar
  53. White, J.U.: Long optical paths of large aperture. J. Opt. Soc. Am. 32(5), 285 (1942). ADSCrossRefGoogle Scholar
  54. Wing, W.H., Ruff, G.A., Lamb, W.E., Spezeski, J.J.: Observation of the infrared spectrum of the hydrogen molecular ion HD+. Phys. Rev. Lett. 36(25), 1488–1491 (1976). ADSCrossRefGoogle Scholar
  55. Yunjie, X., Fukushima, M., Amano, T., McKellar, A.: Infrared absorption spectroscopy of molecular ions in a corona-discharge slit expansion. Chem. Phys. Lett. 242(1–2), 126–131 (1995). ADSCrossRefGoogle Scholar
  56. Zhao, D., Guss, J., Walsh, A.J., Linnartz, H.: Mid-infrared continuous wave cavity ring-down spectroscopy of a pulsed hydrocarbon plasma. Chem. Phys. Lett. 565, 132–137 (2013). ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Physics DepartmentInstituto de Estructura de la Materia (IEM-CSIC)MadridSpain

Personalised recommendations