Advertisement

Spectroscopy of Interstellar Carbonaceous Dust

  • Víctor J. Herrero
  • Belén Maté
  • Germán Molpeceres
  • Miguel Jiménez-Redondo
  • Isabel Tanarro
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 451)

Abstract

Carbonaceous grains make a large part of cosmic dust and contain a significant fraction of the carbon available in the interstellar medium (ISM). Observational evidence for the presence of carbonaceous grains comes mostly from IR absorption spectra. The most intense IR absorption is the 3.4 μm band which is ubiquitous in the diffuse ISM and is also present in other galaxies. It is attributed to CH stretching vibrations of CH2 and CH3 groups; weaker absorptions at 6.85 and 7.27 μm are due to aliphatic bendings, and a broad, weak absorption between 6 and 6.4 μm is assigned to C=C stretching. These observations, together with laboratory work on dust analogs, point to amorphous hydrogenated carbon (abbreviated a-C:H or HAC), as the most likely carrier of these IR bands, and thus as the predominant component of carbonaceous grains; however, the H/C ratio and the proportion of sp2 and sp3 carbon atoms are presently debated. Emission IR bands at 3.3, 6.2, 7.7, 8.6 and 11.2 μm are also seen at many places in the ISM. They have been associated with stretching and bending vibrations of aromatic material and are often referred to as aromatic IR bands (AIB). They are mostly attributed to polycyclic aromatic hydrocarbons (PAHs). Refinements to the original PAH hypothesis including the presence of heteroatoms, aliphatic chains or non-planar defective π domains have been introduced to account for the presence of aliphatic emissions and for the observed band shapes. It is conjectured that the PAHs or PAHs-related molecules responsible for the IR emissions are related with the a-C:H structures responsible for dust absorption either as formation precursors or as destruction products. IR spectroscopy provides also clues on grain evolution. It is generally assumed that carbonaceous grains are formed as nanoparticles in the outflows of carbon-rich AGB stars and evolve from this point. When they reach the diffuse ISM, the grains are subjected to H atom bombardment, which leads to the formation of aliphatic structures, and to UV photon and cosmic ray irradiation that destroy aliphatic structures and lead to graphitization. A core/mantel structure is often assumed for the grains in the diffuse ISM, but models differ on whether the aliphatic chains responsible for the 3.4 μm band are located in the core or in the mantle and present day observations cannot decide on that point. In dense clouds the 3.4 μm band disappears. It is believed that the aliphatic carriers of this band are destroyed somewhere in the transition from the diffuse to the dense ISM, since in the interior of dense clouds UV and cosmic ray fluxes are too weak.

Notes

Acknowledgements

The authors acknowledge funding by the Spanish MINECO under grants AYA2015-71975-REDT (Polvo Cósmico) FIS2013-48087-C2-1P, FIS2016-77726-C3-1P, CSD2009-00038 (Astromol) and by the European Union under grant ERC-2013-Syg 610256 (Nanocosmos).

References

  1. Alata, I., et al.: Astron. Astrophys. 569, A119 (2014)CrossRefGoogle Scholar
  2. Allamandola, L.J., Tielens, A.G.G.M., Barker, J.R.: Astrophys. J. 290, L25 (1985)Google Scholar
  3. Campbell, E.K., et al.: Nature. 523, 322 (2015)ADSCrossRefGoogle Scholar
  4. Chiar, J.E., et al.: Astrophys. J. 770, 1 (2013)ADSCrossRefGoogle Scholar
  5. Dartois, E., et al.: Astron. Astrophys. 423, 549 (2004)ADSCrossRefGoogle Scholar
  6. Dartois, E., et al.: Astron. Astrophys. 432, 895 (2005)ADSCrossRefGoogle Scholar
  7. Dartois, E., et al.: Astron. Astrophys. 463, 635 (2007)ADSCrossRefGoogle Scholar
  8. Dartois, E., et al.: Geochim J. 48, 511 (2014)CrossRefGoogle Scholar
  9. Duley, W.W., Williams, D.A.: Mon. Not. R. Astron. Soc. 205, 67 (1983)ADSCrossRefGoogle Scholar
  10. Fonfría, P.J., et al.: Astrophys. J. 673, 445 (2008)ADSCrossRefGoogle Scholar
  11. Frenklach, M., Feigelson, E.D.: Astrophys. J. 341, 372 (1989)ADSCrossRefGoogle Scholar
  12. Gadallah, K.A.K., et al.: Astron. Astrophys. 528, A56 (2011)CrossRefGoogle Scholar
  13. Gadallah, K.A.K., et al.: Astron. Astrophys. 544, A107 (2012)CrossRefGoogle Scholar
  14. Gaulé, H.A., Diáz Leines, G.: Phys. Rev. Lett. 119, 171102 (2017)ADSCrossRefGoogle Scholar
  15. Godard, M., et al.: Astrophys. J. 529, A146 (2011)Google Scholar
  16. Henning, T., Salama, F.: Science. 282, 2204 (1998)ADSCrossRefGoogle Scholar
  17. Hudgins, D.M., Allamandola, M.J.: Astrophys. J. 516, l41 (1999)ADSCrossRefGoogle Scholar
  18. Jacob, W., Möller, W.: Appl. Phys. Lett. 63, 1771 (1993)ADSCrossRefGoogle Scholar
  19. Jäger, C., et al.: Astrophys. J. 689, 249 (2008)ADSCrossRefGoogle Scholar
  20. Jäger, C., et al.: In: Joblin, C., Tielens, A.G.G.M. (eds.) PAHs and the Universe EAS publication series, vol. 46, p. 293 (2011)Google Scholar
  21. Joblin, C., et al.: Astron. Astrophys. 490, 189 (2008)ADSCrossRefGoogle Scholar
  22. Jones, A.P., et al.: Astron. Astrophys. 558, A62 (2013)CrossRefGoogle Scholar
  23. Jones, A.P., et al.: Faraday Discuss. 168, 313 (2014)ADSCrossRefGoogle Scholar
  24. Kwok, S.: Astron. Astrophys. Rev. 24, 8 (2016)ADSCrossRefGoogle Scholar
  25. Kwok, S., Zhang, Y.: Astrophys. J. 771, 5 (2013)ADSCrossRefGoogle Scholar
  26. Léger, A., Puget, J.L.: Astron. Astrophys. 137, L5 (1984)Google Scholar
  27. Maté, B., et al.: Faraday Discuss. 168, 267 (2014)ADSCrossRefGoogle Scholar
  28. Maté, B., et al.: Astrophys. J. 831, 51 (2016)ADSCrossRefGoogle Scholar
  29. Mennella, V., et al.: Astrophys. J. Lett. 507, L177 (1998)ADSCrossRefGoogle Scholar
  30. Mennella, V., et al.: Astron. Astrophys. 367, 355 (2001)ADSCrossRefGoogle Scholar
  31. Mennella, V., et al.: Astrophys. J. 559, 531 (2002)ADSCrossRefGoogle Scholar
  32. Mennella, V., et al.: Astrophys. J. 587, 727 (2003)ADSCrossRefGoogle Scholar
  33. Molpeceres, G., Timón, V., Jiménez-Redondo, M., Escribano, R., Maté, B., Tanarro, I., Herrero, V.J.: Phys. Chem. Chem. Phys. 19, 1352 (2017)CrossRefGoogle Scholar
  34. Peeters, E.: In: Joblin, C., Tielens, A.G.G.M. (eds.) PAHs and the Universe EAS publication series, vol. 13, p. 27 (2011)Google Scholar
  35. Peláez, R.J., Maté, B., Tanarro, I., Molpeceres, G., Jiménez-Redondo, M., Timón, V., Escribano, R., Herrero, V.J.: Plasma Sources Sci. Technol. 27, 035007 (2018)ADSCrossRefGoogle Scholar
  36. Pendleton, Y.J., Allamandola, L.: Astrophys. J. Suppl. Ser. 138, 75 (2002)ADSCrossRefGoogle Scholar
  37. Pino, T., et al.: Astron. Astrophys. 489, 665 (2008)ADSCrossRefGoogle Scholar
  38. Robertson, J.: Adv. Phys. 35, 317 (1986)ADSCrossRefGoogle Scholar
  39. Robertson, J.: Mat. Sci. Eng. 37, 129 (2002)CrossRefGoogle Scholar
  40. Rosenberg, M.J.F., et al.: Astron. Astrophys. 566, L4 (2014)ADSCrossRefGoogle Scholar
  41. Russell, R.W., Soifer, B.T., Willner, S.P.: Astrophys. J. 217, L149 (1977)ADSCrossRefGoogle Scholar
  42. Schmidt, G.D., et al.: Astrophys. J. Lett. 239, L133 (1980)ADSCrossRefGoogle Scholar
  43. Stecher, T.P.: Astrophys. J. 142, 1682 (1965)ADSGoogle Scholar
  44. Steglich, M., et al.: Astrophys. J. Suppl. Ser. 208, 26 (2013)ADSCrossRefGoogle Scholar
  45. Wickramasinghe, D.T., Allen, D.A.: Nature. 287, 518 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Víctor J. Herrero
    • 1
  • Belén Maté
    • 1
  • Germán Molpeceres
    • 1
  • Miguel Jiménez-Redondo
    • 2
  • Isabel Tanarro
    • 1
  1. 1.Instituto de Estructura de la Materia, IEM-CSICMadridSpain
  2. 2.Centro de Física da Universidade do MinhoBragaPortugal

Personalised recommendations