Advertisement

Thermal Reactivity Dynamics in Interstellar Ice

  • Patrice Theulé
  • Jennifer A. Noble
  • Pierre Ghesquière
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 451)

Abstract

Ever more complex organic molecules are being observed in space. Star forming regions, planets and small bodies in our solar system exhibit a rich molecular diversity which culminates in the diverse molecular composition of meteorites. While many complex organic molecules can be formed through gas-phase reactions, solid-state chemistry on interstellar grains plays an important role. In this chapter, we discuss the specific case of purely thermal reactions in ice mantles, which do not require any extra energy input other than thermal energy. Thermal reactions are important because they are not limited by UV or cosmic rays fluxes or the scarcity of radicals on the surface because they involve only dominant mantle molecules. Thermal reactions represent an important step in the formation of complex organic molecules that constitute the primitive material of comets and asteroids.

Notes

Acknowledgements

This work was supported by the Programme National ‘Physique et Chimie du Milieu Interstellaire’ (PCMI) of CNRS/INSU with INC/INP co-funded by CEA and CNES.

References

  1. Bacmann, A., Taquet, V., Faure, A., Kahane, C., Ceccarelli, C.: Astron. Astrophys. 541, L12 (2012)ADSCrossRefGoogle Scholar
  2. Baratta, G.A., Leto, G., Palumbo, M.E.: Astron. Astrophys. 384, 343 (2002)ADSCrossRefGoogle Scholar
  3. Bernstein, M.P., Dworkin, J.P., Sandford, S.A., Cooper, G.W., Allamandola, L.J.: Nature, 416, 401 (2002)ADSCrossRefGoogle Scholar
  4. Bossa, J.B., Theule, P., Duvernay, F., Chiavassa, T.: Astrophys. J. 707, 1524 (2009)ADSCrossRefGoogle Scholar
  5. Bowron, D.T., Finney, J.L., Hallbrucker, A., Kohl, I., Loerting, T., Mayer, E., Soper, A.K.: J. Chem. Phys. 125, 194502 (2006)ADSCrossRefGoogle Scholar
  6. Delsemme, A.H.: J. Phys. Chem. 87, 4214 (1983)ADSCrossRefGoogle Scholar
  7. Chen, Y.-J., Ciaravella, A., Muñoz Caro, G.M., et al.: Astrophys. J. 778, 162 (2013)ADSCrossRefGoogle Scholar
  8. Ciaravella, A., Muñoz Caro, G., Jiménez Escobar, A., et al.: Astrophys. J. Lett. 722, L45 (2010)ADSCrossRefGoogle Scholar
  9. Ciaravella, A., Jiménez-Escobar, A., Muñoz Caro, G.M., et al.: Astrophys. J. Lett. 746, L1 (2012)ADSCrossRefGoogle Scholar
  10. Cooke, I.R., Öberg, K.I., Fayolle, E.C., Peeler, Z., Bergner, J.B.: (2017). arXiv:1711.09967Google Scholar
  11. Cottin, H., Gazeau, M.C., Benilan, Y., Raulin, F.: Astrophys. J. 556, 417 (2001)ADSCrossRefGoogle Scholar
  12. Cronin, J.R., Pizzarello, S.: Adv. Space Res. 3, 5 (1983)CrossRefGoogle Scholar
  13. Dartois, E.: Space Sci. Rev. 119, 293 (2005)ADSCrossRefGoogle Scholar
  14. Elsila, J.E., Glavin, D.P., Dworkin, J.P.: Meteorit. Planet. Sci. 44, 1323 (2009)ADSCrossRefGoogle Scholar
  15. Ehrenfreund, P., Charnley, S.B.: Ann. Rev. Astron. Astrophys. 38, 427 (2000)ADSCrossRefGoogle Scholar
  16. Finney, J.L., Hallbrucker, A., Kohl, I., Soper, A.K., Bowron, D.T.: Phys. Rev. Lett. 88, 225503 (2002)ADSCrossRefGoogle Scholar
  17. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., et al.: Gaussian 16, Revision A.03, 2016. Gaussian Inc. Wallingford, CTGoogle Scholar
  18. Ghesquière, P., Mineva, T., Talbi, D., et al.: Phys. Chem. Chem. Phys. 17, 11455 (2015)CrossRefGoogle Scholar
  19. Ghesquière, P., Noble, J.A., Ivlev, A., Theulé, P.: Astron. Astrophys. 614, A107 (2018). https://doi.org/10.1051/0004-6361/201732288 ADSCrossRefGoogle Scholar
  20. Goesmann, F., Rosenbauer, H., Bredehöft, J.H., et al.: Science 349(6247), aab0689 (2015)CrossRefGoogle Scholar
  21. Gudipati, M.S., Abou Mrad, N., Blum, J., et al.: Space Sci. Rev. 197, 101 (2015)ADSCrossRefGoogle Scholar
  22. Herbst, E., van Dishoeck, E.F.: Ann. Rev. Astron. Astrophys. 47, 427 (2009)ADSCrossRefGoogle Scholar
  23. Hill, R.C., Mitterdorfer, C., Youngs, T.G.A., Bowron, D.T., Fraser, H.J., Loerting, Th.: Phys. Rev. Lett. 116(21), 215501 (2016)ADSCrossRefGoogle Scholar
  24. Jenniskens, P., Blake, D.F.: Science 265, 753 (1994)ADSCrossRefGoogle Scholar
  25. Lafosse, A., Bertin, M., Hoffman, A., Azria, R.: Surf. Sci. 603, 1873 (2009)ADSCrossRefGoogle Scholar
  26. Livingston, F.E., Smith, J.A., George, S.M.: J. Phys. Chem. A 106, 6309 (2002)CrossRefGoogle Scholar
  27. Mispelaer, F., Theulé, P., Aouididi, H., et al.: Astron. Astrophys. 555, A13 (2013)CrossRefGoogle Scholar
  28. Müller, H.S.P., Schlöder, F., Stutzki, J., Winnewisser, G.: J. Mol. Struct. 742, 215 (2005)ADSCrossRefGoogle Scholar
  29. Muñoz Caro, G.M., Meierhenrich, U.J., Schutte, W.A., et al.: Nature 416, 403 (2002)ADSCrossRefGoogle Scholar
  30. Noble, J.A., Theule, P., Duvernay, F., et al.: Phys. Chem. Chem. Phys. 16, 23604 (2014)CrossRefGoogle Scholar
  31. Smith, R.S., Huang, C., Kay, B.D.: J. Phys. Chem. B 101, 6123 (1997)CrossRefGoogle Scholar
  32. Postberg, F., Khawaja, N.A., Kempf, S., et al.: Lunar Planet. Sci. Conf. 48, 1401 (2017)ADSGoogle Scholar
  33. Theulé, P., Duvernay, F., Danger, G., et al.: Adv. Space Res. 52, 1567 (2013)ADSCrossRefGoogle Scholar
  34. van Dishoeck, E.F.: Faraday Discuss. 168, 9 (2014)ADSCrossRefGoogle Scholar
  35. Varotsos, C.A., Zellner, R.: Atmos. Chem. Phys. 10, 3099 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Patrice Theulé
    • 1
  • Jennifer A. Noble
    • 2
  • Pierre Ghesquière
    • 3
  1. 1.Aix-Marseille UniversitéPIIM UMR-CNRS 7345MarseilleFrance
  2. 2.Université Lille 1 Sciences TechnologiesPHLAM UMR-CNRS 8523Villeneuve d’AscqFrance
  3. 3.Université de Bourgogne Franche-ComtéLICB UMR-CNRS 6303DijonFrance

Personalised recommendations