Intelligence, Problem Solving, and Creativity

  • Carmen Flores-Mendoza
  • Rubén Ardila
  • Ricardo Rosas
  • María Emilia Lucio
  • Miguel Gallegos
  • Norma Reátegui Colareta


In this chapter, notions of psychometric intelligence and cognitive psychology were used to analyze individual differences in the ability to execute cognitive processes. Specifically, the performance of good and poor problem solvers through the analysis of the types of errors in the SPM test were studied. Additionally, the relationship between creativity and intelligence was analyzed in middle-low and high cognitive performers.


Intelligence Problem solving Creativity Type of errors 


  1. Anderson, J.R. (1990). Cognitive psychology and its implications (3rd ed.). New York: W.H. Freeman and Company.Google Scholar
  2. Babcock, R. L. (2002). Analysis of age differences in types of errors on the Raven’s advanced progressive matrices. Intelligence, 30, 485–503.CrossRefGoogle Scholar
  3. Benedek, M., Jauk, E., Sommer, M., Arendasy, M., & Neubauer, A. C. (2014). Intelligence, creativity, and cognitive control: The common and differential involvement of executive functions in intelligence and creativity. Intelligence, 46, 73–83. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Butcher, H. J. (1968). Human intelligence—Its nature and assessment. London: Methuen.Google Scholar
  5. Cho, S. H., Nijenhuis, J. T., van Vianen, A. E. M., Kim, H., & Lee, K. H. (2010). The relation between diverse components of intelligence and creativity. Journal of Creative Behaviour, 44, 125–137.CrossRefGoogle Scholar
  6. Chuderski, A. (2015). Why people fail on the fluid intelligence tests. Journal of Individual Differences, 36(3), 138–149. CrossRefGoogle Scholar
  7. Eysenck, H. (1995). Genius: The natural history of creativity. New York: Cambridge University Press.CrossRefGoogle Scholar
  8. Flynn, J. (2007). What is Intelligence?: Beyond the Flynn effect. London: Cambridge University Press.CrossRefGoogle Scholar
  9. Greeno, J. G., & Simon, H. A. (1988). Problem solving and reasoning. In R. C. Atkinson, R. J. Herrnstein, G. Lindzey, & R. D. Luce (Eds.), Stevens’ handbook of experimental psychology, Learning and cognition (Vol. 2, 2nd ed., pp. 589–672). New York: Wiley.Google Scholar
  10. Guilford, J. P. (1950). Creativity. The American Psychologist, 5, 444–454.CrossRefGoogle Scholar
  11. Guilford, J. P. (1967). The nature of human intelligence. New York: McGraw-Hill.Google Scholar
  12. Gunn, D., & Jarrold, C. (2004). Raven’s matrices performance in Down syndrome: Evidence of unusual errors. Research in Developmental Disabilities, 25, 443–457.CrossRefGoogle Scholar
  13. Hunt, E. B. (1989). Cognitive science: definition, status, and questions. Annual Review of Psychology, 40, 603–629.CrossRefGoogle Scholar
  14. Jauk, E., Benedek, M., Dunst, B., & Neubauer, A. C. (2013). The relationship between intelligence and creativity: New support for the threshold hypothesis by menos of empirical breakpoint detection. Intelligence, 41, 212–221. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Karwowski, M., Dul, J., Gralewski, J., Jauk, E., Jankowska, D. M., Gadja, A., … Benedek, M. (2016). Is creatitivity without intelligence possible? A necessary condition analysis. Intelligence, 57, 105–117.CrossRefGoogle Scholar
  16. Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The four C model of creativity. Review of General Psychology, 13, 1–12.CrossRefGoogle Scholar
  17. Kim, K. H. (2005). Can only intelligent people be creative? Journal of Secondary Gifted Education, 16, 57–66.CrossRefGoogle Scholar
  18. Kunda, M., Soulières, I., Rozga, A. & Goel, A.K. (2013). Methods for classifying errors on the Raven’s standard progressive matrices test. Proceedings of the Annual Meeting of the Cognitive Science Society (COGSCI’13), pp. 2796–2801 Retrieved from
  19. Kunda, M., Soulieres, I., Rozga, A., & Goel, A. (2016). Error patterns on the Raven’s standard progressive matrices test. Intelligence, 59, 181–198.CrossRefGoogle Scholar
  20. Ludwing, A. M. (1995). What “Explaining creativity” doesn’t explain. Creativity Research Journal, 8, 413–416.CrossRefGoogle Scholar
  21. Mackintosh, N. J., & Bennett, E. S. (2005). What do Raven’s matrices measure? An analysis in terms of sex differences. Intelligence, 33, 663–674. CrossRefGoogle Scholar
  22. Nusbaum, E. C., & Silvia, P. J. (2011). Are intelligence and creativity really so different? Fluid intelligence, executive processes, and strategy use in divergent thinking. Intelligence, 39, 36–45.CrossRefGoogle Scholar
  23. Preckel, F., Holling, H., & Wiesse, M. (2006). Relationship of intelligence and creativity in gifted and non-gifted students: An investigation of threshold theory. Personality and Individual Differences, 40, 159–170.CrossRefGoogle Scholar
  24. Raven, J., Raven, J. C., & Court, J. H. (2000). Manual for Raven’s progressive matrices and vocabulary scales. Section 3: The standard progressive matrices. Oxford, England: Oxford Psychologists Press.Google Scholar
  25. Richards, R. (1993). Everyday creativity, eminent creativity, and psychopathology. Psychological Inquiry, 4, 212–217.CrossRefGoogle Scholar
  26. Richards, R. (2007). Everyday creativity: Our hidden potential. In R. Richards (Ed.), Everyday creativity and new views of human nature (pp. 25–45). Washington, DC: American Psychological Association.Google Scholar
  27. Simonton, D. K. (1994). Greatness: Who makes history and why. New York: Guilford Press.Google Scholar
  28. Simonton, D. K. (2004). Creativity in science: Chance, logic, genius, and zeitgeist. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  29. Stadler, M., Becker, N., Godker, M., Leutner, D., & Greiff, S. (2015). Complex problem solving and intelligence: A meta-analysis. Intelligence, 53, 92–101.CrossRefGoogle Scholar
  30. Torrance, E. P. (1972). Can we teach children to think creatively? Journal of Creative Behaviour, 6, 114–143.CrossRefGoogle Scholar
  31. Van Herwegen, J., Farran, E., & Annaz, D. (2011). Item and error analysis on Raven’s CPM in Williams syndrome. Research in Developmental Disabilities, 32, 93–99.CrossRefGoogle Scholar
  32. Vernon, P., & Strudensky, S. (1988). Relationship between problem-solving and intelligence. Intelligence, 12, 435–453.CrossRefGoogle Scholar
  33. Vodegel Matzen, L. B. L., Van der Molen, M. W., & Dudink, A. C. M. (1994). Error analysis of Raven test performance. Personality and Individual Differences, 16, 433–445. CrossRefGoogle Scholar
  34. Vosniadou, S. (1988). Analogical reasoning as a mechanism in knowledge acquisition: A developmental perspective. Center for the Study of Reading. Technical Report, n. 438. University of Illinois. Retrieved from
  35. Wustenberg, S., Greiff, S., & Funke, J. (2012). Complex problem solving—More than reasoning? Intelligence, 40, 1–14.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Carmen Flores-Mendoza
    • 1
  • Rubén Ardila
    • 2
  • Ricardo Rosas
    • 3
  • María Emilia Lucio
    • 4
  • Miguel Gallegos
    • 5
  • Norma Reátegui Colareta
    • 6
  1. 1.Department of PsychologyFederal University of Minas Gerais, Psychology InstituteBelo HorizonteBrazil
  2. 2.Department of PsychologyNational University of ColombiaBogotaColombia
  3. 3.School of PsychologyPontifical Catholic University of ChileSantiagoChile
  4. 4.Mental Health and Diagnosis Program Faculty of PsychologyNational Autonomous University of MexicoMexico CityMexico
  5. 5.Faculty of PsychologyNational University of RosarioRosarioArgentina
  6. 6.Faculty of HumanitiesSan Ignacio de Loyola UniversityLimaPeru

Personalised recommendations