Advertisement

Acceleration of Functional Cluster Extraction and Analysis of Cluster Affinity

  • Takayasu Fushimi
  • Kazumi Saito
  • Tetsuo Ikeda
  • Kazuhiro Kazama
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN)

Abstract

Each chapter should be preceded by an abstract (10–15 lines long) that summarizes the content. The abstract will appear online at www.SpringerLink.com and be available with unrestricted access. This allows unregistered users to read the abstract as a teaser for the complete chapter. As a general rule the abstracts will not appear in the printed version of your book unless it is the style of your particular book or that of the series to which your book belongs. Please use the ‘starred’ version of the new Springer abstract command for typesetting the text of the online abstracts (cf. source file of this chapter template abstract) and include them with the source files of your manuscript. Use the plain abstract command if the abstract is also to appear in the printed version of the book.

Notes

Acknowledgements

This work was supported by a JSPS Grant-in-Aid for Scientific Research (No.17H01826) and (No.16K16154).

References

  1. 1.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)CrossRefGoogle Scholar
  2. 2.
    Crucitti, P., Latora, V., Porta, S.: Centrality measures in spatial networks of urban streets. Phys. Rev. E 73, 036125 (2006)Google Scholar
  3. 3.
    Fushimi, T., Saito, K., Kazama, K.: Extracting communities in networks based on functional properties of nodes. In: Proceedings of the 12th Pacific Rim Knowledge Acquisition Workshop (PKAW2012), pp. 328–334. Springer, Berlin (2012)CrossRefGoogle Scholar
  4. 4.
    Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330 (2004)Google Scholar
  5. 5.
    Fushimi, T., Saito, K., Ikeda, T., Kazama, K.: Functional cluster extraction from large spatial networks. In: Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2016), pp. 57–62 (2016)Google Scholar
  6. 6.
    Fushimi, T., Saito, K., Ikeda, T., Kazama, K.: Extracting and characterizing functional communities in spatial networks. In: Proceedings of the Workshop on Artificial Intelligence for Tourism (AI4Tourism2016), pp. 182–193 (2016)Google Scholar
  7. 7.
    Burckhart, K., Martin, O.J.: An interpretation of the recent evolution of the city of Barcelona through the traffic maps. J. Geogr. Inf. Syst. 4(4), 298–311 (2012)CrossRefGoogle Scholar
  8. 8.
    Montis, D.A., Barthelemy, M., Chessa, A., Vespignani, A.: The structure of interurban traffic: a weighted network analysis. Environ. Plann. B. Plann. Des. 34, 905–924 (2007)Google Scholar
  9. 9.
    Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Networks 32, 245–251 (2010)CrossRefGoogle Scholar
  10. 10.
    Park, K., Yilmaz, A.: A social network analysis approach to analyze road networks. In: Proceedings of the ASPRS Annual Conference (2010)Google Scholar
  11. 11.
    Wang, P., Hunter, T., Bayen, A.M., Schechtner, K., Gonzalez, M.C.: Understanding road usage patterns in urban areas. Sci. Rep. 2, 1001 (2012). arXiv:1212.5327Google Scholar
  12. 12.
    Lorrain, F., H. White, H.: Structural equivalence of individuals in social networks. J. Math. Sociol. 1, 49–80 (1971)CrossRefGoogle Scholar
  13. 13.
    Everett, M., Borgatti, S.: Regular equivalence: general theory. J. Math. Sociol. 19, 29–52 (1994)CrossRefGoogle Scholar
  14. 14.
    Henderson, K., Gallagher, B., Li, L., Akoglu, L., Eliassi-Rad, T., Tong, H., Faloutsos, C.: It’s who you know: graph mining using recursive structural features. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 663–671. ACM, New York (2011)Google Scholar
  15. 15.
    Henderson, K., Gallagher, B., Eliassi-Rad, T., Tong, H., Basu, S., Akoglu, L., Koutra, D., Faloutsos, C., Li, L.: RolX: structural role extraction & mining in large graphs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1231–1239. ACM, New York (2012)Google Scholar
  16. 16.
    Rossi, R.A., Gallagher, B., Neville, J., Henderson, K.: Role-dynamics: fast mining of large dynamic networks. In: Proceedings of the 21st International Conference Companion on World Wide Web, pp. 997–1006. ACM, New York (2012)Google Scholar
  17. 17.
    Rossi, R.A., Gallagher, B., Neville, J., Henderson, K.: Modeling dynamic behavior in large evolving graphs. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 667–676. ACM, New York (2013)Google Scholar
  18. 18.
    Gilpin, S., Eliassi-Rad, T., Davidson, I.: Guided learning for role discovery (GLRD): framework, algorithms, and applications. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 113–121. ACM, New York (2013)Google Scholar
  19. 19.
    Rossi, R.A., Ahmed, N.K.: Role discovery in networks. IEEE Trans. Knowl. Data Eng. 27, 1112–1131 (2015)CrossRefGoogle Scholar
  20. 20.
    Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and POIs. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’12, pp. 186–194. ACM, New York (2012)Google Scholar
  21. 21.
    Seidman, S.B.: Network structure and minimum degree. Soc. Networks 5, 269–287 (1983)CrossRefGoogle Scholar
  22. 22.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  23. 23.
    Jiang, C., Li, Y., Shao, M., Jia, P.: Accelerating clustering methods through fractal based analysis. In: The 1st Workshop on Application of Self-Similarity and Fractals in Data Mining (KDD2002 Workshop) (2002)Google Scholar
  24. 24.
    Aggarwal, A., Deshpande, A., Kannan, R.: Adaptive sampling for k-means clustering. In: Proceedings of the 12th International Workshop and 13th International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 15–28. Springer, Berlin (2009)CrossRefGoogle Scholar
  25. 25.
    Elkan, C.: Using the triangle inequality to accelerate k-means. In: Fawcett, T., Mishra, N. (eds.) Machine Learning, Proceedings of the 12th International Conference (ICML 2003), pp. 147–153. AAAI Press, Palo Alto (2003)Google Scholar
  26. 26.
    Hamerly, G.: Making k-means even faster. In: SIAM International Conference on Data Mining, pp. 130–140 (2010)CrossRefGoogle Scholar
  27. 27.
    Drake, J., Hamerly, G.: Accelerated k-means with adaptive distance bounds. In: Proceedings of the 5th NIPS Workshop on Optimization for Machine Learning (2012)Google Scholar
  28. 28.
    Paterlini, A.A., Nascimento, M.A., Traina, C.J.: Using pivots to speed-up k-medoids clustering. J. Inf. Data Manag. 2, 221–236 (2011)Google Scholar
  29. 29.
    Vinod, H.: Integer programming and the theory of grouping. J. Am. Stat. Assoc. 64, 506–519 (1969)CrossRefGoogle Scholar
  30. 30.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions. Math. Program. 14, 265–294 (1978)CrossRefGoogle Scholar
  31. 31.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Costeffective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420–429 (2007)Google Scholar
  32. 32.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32, 1st edn. Springer, Berlin (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Takayasu Fushimi
    • 1
  • Kazumi Saito
    • 2
  • Tetsuo Ikeda
    • 2
  • Kazuhiro Kazama
    • 3
  1. 1.Tokyo University of TechnologyHachioji CityJapan
  2. 2.University of ShizuokaShizuoka CityJapan
  3. 3.Wakayama UniversityWakayama CityJapan

Personalised recommendations