Complete Design of a Hardware and Software Framework for PWM/Discrete PID-Based Speed Control of a Permanent-Magnet DC Motor Without Prior Knowledge of the Motor’s Parameters

  • Chady El  MoucaryEmail author
  • Abdallah Kassem
  • Walid Zakhem
  • Chaybane Ghabach
  • Roger El  Khoury
  • Patrick Rizk
Conference paper


In this chapter, we present a complete and innovative design for PWM- and discrete PID-based speed control of a permanent-magnet DC motor without prior knowledge of any of the motor’s physical parameters or electric model. A comprehensive description of the hardware is outlined with pertinent theoretical frameworks. The actual speed is measured using a tachometer coupled to a pulse counter and then filtered before it is sent to the compensator which is implemented using a PIC microcontroller. The piloting software is developed in Visual Basic and entails the user with a resourceful interface allowing for real-time capabilities in terms of correcting the controller’s parameters and the required trajectories. Protection against excessive current and mechanical speed is featured via adjustable limitations based on the mode of operation. The entire system was built by engineering students without any utilization of preassembled components and modeled using NI Multisim Circuit Design for simulation purposes. Experimental results demonstrated optimal effectiveness of the speed control scheme in terms of specification requirements such as mode of response, time constants, and tracking and steady-state errors.


Online speed control DC motor Unknown motor’s parameters/model Discrete PID PWM 


  1. 1.
    Buja, G.S. and Kazmierkowski, M.P., 2004. Direct torque control of PWM inverter-fed AC motors-a survey. IEEE Transactions on industrial electronics, 51(4), pp.744–757.CrossRefGoogle Scholar
  2. 2.
    Ogasawara, S., Akagi, H. and Nabae, A., 1990. A novel PWM scheme of voltage source inverters based on space vector theory. Archiv für Elektrotechnik, 74(1), pp.33–41.CrossRefGoogle Scholar
  3. 3.
    Kazmierkowski, M.P. and Malesani, L., 1998. Current control techniques for three-phase voltage-source PWM converters: A survey. IEEE Transactions on industrial electronics, 45(5), pp.691–703.CrossRefGoogle Scholar
  4. 4.
    Öztürk, N., Kaplan, O. and Çelik, E., 2017. Zero-current switching technique for constant voltage constant frequency sinusoidal PWM inverter. Electrical Engineering, pp.1–11.Google Scholar
  5. 5.
    Leon, J.I., Kouro, S., Franquelo, L.G., Rodriguez, J. and Wu, B., 2016. The essential role and the continuous evolution of modulation techniques for voltage-source inverters in the past, present, and future power electronics. IEEE Transactions on Industrial Electronics, 63(5), pp.2688–2701.CrossRefGoogle Scholar
  6. 6.
    Johnson, M.A. and Moradi, M.H., 2005. PID control. Springer-Verlag London Limited.Google Scholar
  7. 7.
    Hamamci, S.E., 2008. Stabilization using fractional-order PI and PID controllers. Nonlinear Dynamics, 51(1), pp.329–343.CrossRefGoogle Scholar
  8. 8.
    Vilanova, R. and Visioli, A., 2012. PID control in the third millennium. London: Springer.Google Scholar
  9. 9.
    Lin, C.L. and Jan, H.Y., 2005. An approach to solving for multi-objective optimization problem with application to linear motor control design. Control and intelligent systems, 33(2), pp.75–86.Google Scholar
  10. 10.
    Hendy, H., Rui, X., Zhou, Q. and Khalil, M., 2014. Controller parameters tuning based on transfer matrix method for multibody systems. Advances in Mechanical Engineering, 6, p.957684.CrossRefGoogle Scholar
  11. 11.
    Mudi, R.K. and Pal, N.R., 1999. A robust self-tuning scheme for PI-and PD-type fuzzy controllers. IEEE Transactions on fuzzy systems, 7(1), pp.2–16.CrossRefGoogle Scholar
  12. 12.
    Åström, K.J. and Hägglund, T., 2004. Revisiting the Ziegler–Nichols step response method for PID control. Journal of process control, 14(6), pp.635–650.CrossRefGoogle Scholar
  13. 13.
    Åström, K.J. and Hägglund, T., 1984. Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica, 20(5), pp.645–651.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Barbosa, R.S., Machado, J.T. and Ferreira, I.M., 2004. Tuning of PID controllers based on Bode’s ideal transfer function. Nonlinear dynamics, 38(1), pp.305–321.CrossRefGoogle Scholar
  15. 15.
    Åström, K.J. and Hägglund, T., 2006. PID control. IEEE CONTROL SYSTEMS MAGAZINE, 1066(033X/06). Google Scholar
  16. 16.
    Chemuturi, Murali. Requirements Engineering and Management for Software Development Projects. New York: Springer, 2013.CrossRefGoogle Scholar
  17. 17.
    Carriegos, M. and Hermida-Alonso, J.A., 2003. Canonical forms for single input linear systems. Systems & control letters, 49(2), pp.99–110.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Chady El  Moucary
    • 1
    Email author
  • Abdallah Kassem
    • 1
  • Walid Zakhem
    • 1
  • Chaybane Ghabach
    • 1
  • Roger El  Khoury
    • 1
  • Patrick Rizk
    • 1
  1. 1.Department of Electrical, Computer, and Communication EngineeringNotre Dame University–LouaizeZouk MosbehLebanon

Personalised recommendations