Interventional Radiology

  • Claudio Pusceddu
  • Francesco Allegra
  • Luca Saba


Computed tomography (CT) and ultrasound (US) are currently considered as the the main imaging modalities in the field of interventional radiology. Because of the different characteristics of these modalities their use is different. In particular CT is widely used to obtain accurate needle-tip localization and excellent delineation of interposed vital structures but the most important draback is the lack of real-time imaging. On the other hand US is readily available, relatively inexpensive, and allows for real time imaging. Moreover, Color flow Doppler imaging can help identify the vascular nature of the mass and the adjacent vascular structures. In this chapter we will show the different Interventional Radiology Procedures by showing advantages and limits of these techniques.


Computed tomography Ultrasound Interventional radiology 


  1. 1.
    Gupta S. Role of image-guided percutaneous needle biopsy in cancer staging. Semin Roentgenol. 2006;41:78–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Collins JM, Kriegshauser JS, Leslie KO. CT-guided biopsy of perivascular tumor encasement using simultaneous IV contrast enhancement. Am J Roentgenol. 2009;193:W283–7.CrossRefGoogle Scholar
  3. 3.
    Ahrar K, Gupt S, editors. Percutaneous image-guided biopsy. New York: Springer; 2013.Google Scholar
  4. 4.
    Pate IJ, Davidson JC, Nikolic B, et al. Standards of practice committee, with cardiovascular and interventional radiological Society of Europe (CIRSE) endorsement. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol. 2012;23(6):727–36.CrossRefGoogle Scholar
  5. 5.
    Manhire A, Charig M, Clelland C, et al. Guidelines for radiologically guided lung biopsy. Thorax. 2003;58(11):920–36.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Khadadah ME, Muqim AT, Al-Mutairi AD, et al. Closed percutaneous pleural biopsy. A lost art in the new era. Saudi Med J. 2009;30(6):793–7.PubMedGoogle Scholar
  7. 7.
    Winokur RS, Pua BB, Sullivan BW, Madoff DC, FSIR. Percutaneous lung biopsy: technique, efficacy, and complications. Semin Interv Radiol. 2013;30:121–7.CrossRefGoogle Scholar
  8. 8.
    Ahrar K, Gupta S, editors. Percutaneous image-guided biopsy. New York: Springer; 2014. Chapter 11Google Scholar
  9. 9.
    Frable WF. Fine needle aspiration biopsy techniques. In: Bibbo M, Wilbur D, editors. Comprehensive cytopathology. 3rd ed. Philadelphia: Saunders, Elsevier; 2008. p. 579–98.CrossRefGoogle Scholar
  10. 10.
    Solomon SB, Zakowski MF, Pao W, et al. Core needle lung biopsy specimens: adequacy for EGFR and KRAS mutational analysis. AJR Am J Roentgenol. 2010;194(1):266–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Morvay Z, Szabó E, Tiszlavicz L, Furák J, Troján I, Palkó A. Thoracic core needle biopsy using ultrasound guidance. Ultrasound Q. 2001;17:113–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Moore EH, Shepard JO, McLoud TC, et al. Positional precautions in needle aspiration lung biopsy. Radiology. 1990;175:733–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Swischuk JL, Castaneda F, Patel JC, et al. Percutaneous transthoracic needle biopsy of the lung: review of 612 lesions. J Vasc Interv Radiol. 1998;9(2):347–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Aziz A, Ashizawa K, Nagaoki K, Hayashi K. High resolution CT anatomy of the pulmonary fissures. J Thorac Imaging. 2004;19:186–91.CrossRefPubMedGoogle Scholar
  15. 15.
    Arakawa H, Nakajima Y, Kurihara H, et al. CT-guided transthoracic needle biopsy: a comparison between automated biopsy gun and fine needle aspiration. Clin Radiol. 1996;51(7):503–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Wallace AB, Suh RD. Percutaneous transthoracic needle biopsy: special considerations and techniques used in lung transplant recipients. Semin Interv Radiol. 2004;21(4):247–5.CrossRefGoogle Scholar
  17. 17.
    Ahrar K, Gupta S, editors. Percutaneous image-guided biopsy. New York: Springer; 2014. p. 119.CrossRefGoogle Scholar
  18. 18.
    Light RW. Parapneumonic effusions and empyema. ClinChestMed. 1985;6(1):55–62.Google Scholar
  19. 19.
    Feller-Kopman D. Ultrasound-guided thoracentesis. Chest. 2006;129(6):1709–14.CrossRefPubMedGoogle Scholar
  20. 20.
    Balik M, Plasil P, Waldauf P, et al. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006;32(2):318–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Nicolaou S, Talsky A, Khashoggi K, Venu V. Ultrasound-guided interventional radiology in critical care. Crit Care Med. 2007;35(supplement 5):S186–97.CrossRefPubMedGoogle Scholar
  22. 22.
    Sikora K, Perera P, Mailhot T, Mandavia D. Ultrasound for the detection of pleural effusions and guidance of the thoracentesis procedure. ISRN Emergency Medicine. 2012;2012:676524.CrossRefGoogle Scholar
  23. 23.
    Patz EF, Goodman PC, Erasmus JJ. Percutaneous drainage of pleural collections. J Thorac Imaging. 1998;13(2):83–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Laws D, Neville E, Duffy J, on behalf of the British Thoracic Society Pleural Disease Group, a subgroup of the British Thoracic Society Standards of Care Committee. BTS guidelines for the insertion of a chest drain. Thorax. 2003;58(Suppl II):ii53–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ghaye B, Dondelinger RF. Image guided thoracic interventions. Eur Respir J. 2001;17:507–28.CrossRefPubMedGoogle Scholar
  26. 26.
    Heunks L, Demoule A, Windisch W. Pulmonary emergencies. Sheffield: ERS; 2016. p. 230–9.CrossRefGoogle Scholar
  27. 27.
    National Lung Cancer Audit – LUCADA.Google Scholar
  28. 28.
    Nikfarjam M, Muralidharan V, Christophi C. Mechanisms of focal heat destruction of liver tumors. J Surg Res. 2005;127(2):208–23.CrossRefPubMedGoogle Scholar
  29. 29.
    Hiraki T, Gobara H, Mimura H, Toyooka S, Fujiwara H, Yasui K, et al. Radiofrequency ablation of lung cancer at Okayama University Hospital: a review of 10 years of experience. Acta Med Okayama. 2011;65(5):287.PubMedGoogle Scholar
  30. 30.
    Abbas G, Pennathur A, Landreneau RJ, Luketich JD. Radiofrequency and microwave ablation of lung tumors. J Surg Oncol. 2009;100(8):645–50.CrossRefPubMedGoogle Scholar
  31. 31.
    Ambrogi MC, Fanucchi O, Cioni R, Dini P, De Liperi A, Cappelli C, et al. Longterm results of radiofrequency ablation treatment of stage I non-small cell lung cancer: a prospective intention-to-treat study. J Thorac Oncol. 2011;6(12):2044–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25(suppl 1):S69–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Wolf FJ, Grand DJ, Machan JT, DiPetrillo TA, Mayo-Smith WW, Dupuy DE. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients1. Radiology. 2008;247(3):871.CrossRefPubMedGoogle Scholar
  34. 34.
    Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology. 1998;37(3):171–86.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang H, Littrup PJ, Duan Y, Zhang Y, Feng H, Nie Z. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology. 2005;235(1):289.CrossRefPubMedGoogle Scholar
  36. 36.
    Pusceddu C, Sotgia B, Fele RM, Melis L. CT-guided thin needles percutaneous cryoablation (PCA) in patients with primary and secondary lung tumors: a preliminary experience. Eur J Radiol. 2013;82(5):e246–53.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Claudio Pusceddu
    • 1
  • Francesco Allegra
    • 2
  • Luca Saba
    • 2
  1. 1.Department of RadiologyAOBCagliariItaly
  2. 2.Department of RadiologyUniversity of CagliariCagliariItaly

Personalised recommendations