Advertisement

Indications to the Use of Computed Tomography in Thoracic Pathologies

  • Francesco Lavra
  • Luca Saba
Chapter

Abstract

During the past decades, improvement in computed tomography (CT) technology and post-processing techniques have favoured its wide use in the clinical practice.

Nowadays, CT does not only provide a mere anatomical assessment but is also capable to give information regarding the chemical composition, as well as the blood flow of the scanned tissue. The rapid coverage of large anatomic volumes and its high spatial and temporal resolution also make CT particularly suitable in the assessment of criticaly ill patients. Moreover, CT allows a detailed assessment of lung parenchyma, interstitium, and airways, as well as the thoracic vasculature and coronary arteries. Because of these technical and diagnostic characteristics CT has gained a crucial role in the assessment of thoracic pathologies.

Given the risk associated with radiation exposure and contrast media administration, it is of paramount importance to appropriately use CT in the clinical situations in which this technique has the proper diagnostic yield.

The purpose of this chapter is to explain the clinical indication of CT in thoracic pathologies to establish the appropriateness criteria for use of this technique in standard diagnostic care.

Keywords

Computed tomography Thoracic pathology Anatomical assessment Neoplastic disease Vascular disease Lung disease 

References

  1. 1.
    Han BK, Rigsby CK, Leipsic J, Bardo D, Abbara S, Ghoshhajra B, et al. Computed tomography imaging in patients with congenital heart disease, Part 2: Technical recommendations. An expert consensus document of the society of cardiovascular computed tomography (SCCT): endorsed by the society of pediatric radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9(6):493–513.  https://doi.org/10.1016/j.jcct.2015.07.007.CrossRefPubMedGoogle Scholar
  2. 2.
    Han BK, Lindberg J, Grant K, Schwartz RS, Lesser JR. Accuracy and safety of high pitch computed tomography imaging in young children with complex congenital heart disease. Am J Cardiol. 2011;107(10):1541–6.  https://doi.org/10.1016/j.amjcard.2011.01.065.CrossRefPubMedGoogle Scholar
  3. 3.
    Lell MM, May M, Deak P, Alibek S, Kuefner M, Kuettner A, et al. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Investig Radiol. 2011;46(2):116–23.  https://doi.org/10.1097/RLI.0b013e3181f33b1d.CrossRefGoogle Scholar
  4. 4.
    Little BP. Approach to chest computed tomography. Clin Chest Med. 2015;36(2):127–45, vii.  https://doi.org/10.1016/j.ccm.2015.02.001.CrossRefPubMedGoogle Scholar
  5. 5.
    Panebianco V, Grazhdani H, Iafrate F, Petroni M, Anzidei M, Laghi A, et al. 3D CT protocol in the assessment of the esophageal neoplastic lesions: can it improve TNM staging? Eur Radiol. 2006;16(2):414–21.  https://doi.org/10.1007/s00330-005-2851-5.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Johnson TR, Krauss B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.  https://doi.org/10.1007/s00330-006-0517-6.CrossRefPubMedGoogle Scholar
  7. 7.
    Hartman R, Kawashima A, Takahashi N, Silva A, Vrtiska T, Leng S, et al. Applications of dual-energy CT in urologic imaging: an update. Radiol Clin N Am. 2012;50(2):191–205.  https://doi.org/10.1016/j.rcl.2012.02.007.CrossRefPubMedGoogle Scholar
  8. 8.
    Kaza RK, Platt JF, Megibow AJ. Dual-energy CT of the urinary tract. Abdom Imaging. 2013;38(1):167–79.  https://doi.org/10.1007/s00261-012-9901-7.CrossRefPubMedGoogle Scholar
  9. 9.
    Remy-Jardin M, Faivre JB, Pontana F, Molinari F, Tacelli N, Remy J. Thoracic applications of dual energy. Semin Respir Crit Care Med. 2014;35(1):64–73.  https://doi.org/10.1055/s-0033-1363452.CrossRefPubMedGoogle Scholar
  10. 10.
    Castellino RA. Computer aided detection (CAD): an overview. Cancer Imaging. 2005;5:17–9.  https://doi.org/10.1102/1470-7330.2005.0018.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fraioli F, Bertoletti L, Napoli A, Pediconi F, Calabrese FA, Masciangelo R, et al. Computer-aided detection (CAD) in lung cancer screening at chest MDCT: ROC analysis of CAD versus radiologist performance. J Thorac Imaging. 2007;22(3):241–6.  https://doi.org/10.1097/RTI.0b013e318033aae8.CrossRefPubMedGoogle Scholar
  12. 12.
    Versteylen MO, Kietselaer BL, Dagnelie PC, Joosen IA, Dedic A, Raaijmakers RH, et al. Additive value of semiautomated quantification of coronary artery disease using cardiac computed tomographic angiography to predict future acute coronary syndrome. J Am Coll Cardiol. 2013;61(22):2296–305.  https://doi.org/10.1016/j.jacc.2013.02.065.CrossRefPubMedGoogle Scholar
  13. 13.
    Bashir U, Siddique MM, McLean E, Goh V, Cook GJ. Imaging heterogeneity in lung cancer: techniques, applications, and challenges. AJR Am J Roentgenol. 2016;207(3):534–43.  https://doi.org/10.2214/AJR.15.15864.CrossRefPubMedGoogle Scholar
  14. 14.
    Hong SJ, Kim TJ, Choi YW, Park JS, Chung JH, Lee KW. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: imaging features and histological subtypes. Eur Radiol. 2016;26(10):3660–8.  https://doi.org/10.1007/s00330-015-4196-z.CrossRefPubMedGoogle Scholar
  15. 15.
    Fraioli F, Anzidei M, Zaccagna F, Mennini ML, Serra G, Gori B, et al. Whole-tumor perfusion CT in patients with advanced lung adenocarcinoma treated with conventional and antiangiogenetic chemotherapy: initial experience. Radiology. 2011;259(2):574–82.  https://doi.org/10.1148/radiol.11100600.CrossRefPubMedGoogle Scholar
  16. 16.
    Yuan X, Zhang J, Quan C, Cao J, Ao G, Tian Y, et al. Differentiation of malignant and benign pulmonary nodules with first-pass dual-input perfusion CT. Eur Radiol. 2013;23(9):2469–74.  https://doi.org/10.1007/s00330-013-2842-x.CrossRefPubMedGoogle Scholar
  17. 17.
    Doria-Rose VP, White MC, Klabunde CN, Nadel MR, Richards TB, McNeel TS, et al. Use of lung cancer screening tests in the United States: results from the 2010 National Health Interview Survey. Cancer Epidemiol Biomark Prev. 2012;21(7):1049–59.  https://doi.org/10.1158/1055-9965.EPI-12-0343.CrossRefGoogle Scholar
  18. 18.
    Huber A, Landau J, Ebner L, Butikofer Y, Leidolt L, Brela B, et al. Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging. Eur Radiol. 2016;26(10):3643–52.  https://doi.org/10.1007/s00330-015-4192-3.CrossRefPubMedGoogle Scholar
  19. 19.
    National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.  https://doi.org/10.1056/NEJMoa1102873.CrossRefGoogle Scholar
  20. 20.
    Brenner DJ. Radiation risks potentially associated with low-dose CT screening of adult smokers for lung cancer. Radiology. 2004;231(2):440–5.  https://doi.org/10.1148/radiol.2312030880.CrossRefPubMedGoogle Scholar
  21. 21.
    Imhof H, Schibany N, Ba-Ssalamah A, Czerny C, Hojreh A, Kainberger F, et al. Spiral CT and radiation dose. Eur J Radiol. 2003;47(1):29–37.CrossRefPubMedGoogle Scholar
  22. 22.
    Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, et al. Strategies for CT radiation dose optimization. Radiology. 2004;230(3):619–28.  https://doi.org/10.1148/radiol.2303021726.CrossRefPubMedGoogle Scholar
  23. 23.
    Mayo JR, Aldrich J, Muller NL, Fleischner S. Radiation exposure at chest CT: a statement of the Fleischner Society. Radiology. 2003;228(1):15–21.  https://doi.org/10.1148/radiol.2281020874.CrossRefPubMedGoogle Scholar
  24. 24.
    MacMahon H, Austin JH, Gamsu G, Herold CJ, Jett JR, Naidich DP, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology. 2005;237(2):395–400.  https://doi.org/10.1148/radiol.2372041887.CrossRefPubMedGoogle Scholar
  25. 25.
    Naidich DP, Bankier AA, MacMahon H, Schaefer-Prokop CM, Pistolesi M, Goo JM, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology. 2013;266(1):304–17.  https://doi.org/10.1148/radiol.12120628.CrossRefPubMedGoogle Scholar
  26. 26.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.  https://doi.org/10.3322/caac.20138.CrossRefPubMedGoogle Scholar
  27. 27.
    Chae EJ, Song JW, Krauss B, Song KS, Lee CW, Lee HJ, et al. Dual-energy computed tomography characterization of solitary pulmonary nodules. J Thorac Imaging. 2010;25(4):301–10.  https://doi.org/10.1097/RTI.0b013e3181e16232.CrossRefPubMedGoogle Scholar
  28. 28.
    Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e211S–e50S.  https://doi.org/10.1378/chest.12-2355.
  29. 29.
    Nair A, Klusmann MJ, Jogeesvaran KH, Grubnic S, Green SJ, Vlahos I. Revisions to the TNM staging of non-small cell lung cancer: rationale, clinicoradiologic implications, and persistent limitations. Radiographics. 2011;31(1):215–38.  https://doi.org/10.1148/rg.311105039.CrossRefPubMedGoogle Scholar
  30. 30.
    Glazer HS, Kaiser LR, Anderson DJ, Molina PL, Emami B, Roper CL, et al. Indeterminate mediastinal invasion in bronchogenic carcinoma: CT evaluation. Radiology. 1989;173(1):37–42.  https://doi.org/10.1148/radiology.173.1.2781028.CrossRefPubMedGoogle Scholar
  31. 31.
    Detterbeck FC, Figueroa AS. Lung cancer staging: the value of PET depends on the clinical setting. J Thorac Dis. 2014;6(12):1714–23.  https://doi.org/10.3978/j.issn.2072-1439.2014.11.16.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019–32.  https://doi.org/10.1182/blood-2011-01-293050.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Johnson SA, Kumar A, Matasar MJ, Schoder H, Rademaker J. Imaging for staging and response assessment in lymphoma. Radiology. 2015;276(2):323–38.  https://doi.org/10.1148/radiol.2015142088.CrossRefPubMedGoogle Scholar
  34. 34.
    Pinilla I, Gomez-Leon N, Del Campo-Del Val L, Hernandez-Maraver D, Rodriguez-Vigil B, Jover-Diaz R, et al. Diagnostic value of CT, PET and combined PET/CT performed with low-dose unenhanced CT and full-dose enhanced CT in the initial staging of lymphoma. Q J Nucl Med Mol Imaging. 2011;55(5):567–75.PubMedGoogle Scholar
  35. 35.
    Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.  https://doi.org/10.1200/JCO.2013.54.8800.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hartridge-Lambert SK, Schoder H, Lim RC, Maragulia JC, Portlock CS. ABVD alone and a PET scan complete remission negates the need for radiologic surveillance in early-stage, nonbulky Hodgkin lymphoma. Cancer. 2013;119(6):1203–9.  https://doi.org/10.1002/cncr.27873.CrossRefPubMedGoogle Scholar
  37. 37.
    Kim TJ, Kim HY, Lee KW, Kim MS. Multimodality assessment of esophageal cancer: preoperative staging and monitoring of response to therapy. Radiographics. 2009;29(2):403–21.  https://doi.org/10.1148/rg.292085106.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rice TW. Clinical staging of esophageal carcinoma. CT, EUS, and PET. Chest Surg Clin N Am. 2000;10(3):471–85.PubMedGoogle Scholar
  39. 39.
    Quint LE, Hepburn LM, Francis IR, Whyte RI, Orringer MB. Incidence and distribution of distant metastases from newly diagnosed esophageal carcinoma. Cancer. 1995;76(7):1120–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Morgenthaler TI, Brown LR, Colby TV, Harper CM Jr, Coles DT. Thymoma. Mayo Clin Proc. 1993;68(11):1110–23.CrossRefPubMedGoogle Scholar
  41. 41.
    Regnard JF, Magdeleinat P, Dromer C, Dulmet E, de Montpreville V, Levi JF, et al. Prognostic factors and long-term results after thymoma resection: a series of 307 patients. J Thorac Cardiovasc Surg. 1996;112(2):376–84.  https://doi.org/10.1016/S0022-5223(96)70265-9.CrossRefPubMedGoogle Scholar
  42. 42.
    Lewis JE, Wick MR, Scheithauer BW, Bernatz PE, Taylor WF. Thymoma. A clinicopathologic review. Cancer. 1987;60(11):2727–43.CrossRefPubMedGoogle Scholar
  43. 43.
    Osserman KE, Genkins G. Studies in myasthenia gravis: review of a twenty-year experience in over 1200 patients. Mt Sinai J Med. 1971;38(6):497–537.PubMedGoogle Scholar
  44. 44.
    Rosado-de-Christenson ML, Strollo DC, Marom EM. Imaging of thymic epithelial neoplasms. Hematol Oncol Clin North Am. 2008;22(3):409–31.  https://doi.org/10.1016/j.hoc.2008.03.011.CrossRefPubMedGoogle Scholar
  45. 45.
    Huang J, Detterbeck FC, Wang Z, Loehrer PJ Sr. Standard outcome measures for thymic malignancies. J Thorac Oncol. 2010;5(12):2017–23.  https://doi.org/10.1097/JTO.0b013e3181f13682.CrossRefPubMedGoogle Scholar
  46. 46.
    Incarbone M, Pastorino U. Surgical treatment of chest wall tumors. World J Surg. 2001;25(2):218–30.CrossRefPubMedGoogle Scholar
  47. 47.
    David EA, Marshall MB. Review of chest wall tumors: a diagnostic, therapeutic, and reconstructive challenge. Semin Plast Surg. 2011;25(1):16–24.  https://doi.org/10.1055/s-0031-1275167.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Athanassiadi K, Kalavrouziotis G, Rondogianni D, Loutsidis A, Hatzimichalis A, Bellenis I. Primary chest wall tumors: early and long-term results of surgical treatment. Eur J Cardiothorac Surg. 2001;19(5):589–93.CrossRefPubMedGoogle Scholar
  49. 49.
    Jeung MY, Gangi A, Gasser B, Vasilescu C, Massard G, Wihlm JM, et al. Imaging of chest wall disorders. Radiographics. 1999;19(3):617–37.  https://doi.org/10.1148/radiographics.19.3.g99ma02617.CrossRefPubMedGoogle Scholar
  50. 50.
    Tateishi U, Gladish GW, Kusumoto M, Hasegawa T, Yokoyama R, Tsuchiya R, et al. Chest wall tumors: radiologic findings and pathologic correlation: part 1. Benign tumors. Radiographics. 2003;23(6):1477–90.  https://doi.org/10.1148/rg.236015526.CrossRefPubMedGoogle Scholar
  51. 51.
    O'Sullivan P, O'Dwyer H, Flint J, Munk PL, Muller NL. Malignant chest wall neoplasms of bone and cartilage: a pictorial review of CT and MR findings. Br J Radiol. 2007;80(956):678–84.  https://doi.org/10.1259/bjr/82228585.CrossRefPubMedGoogle Scholar
  52. 52.
    Afilalo J, Therrien J, Pilote L, Ionescu-Ittu R, Martucci G, Marelli AJ. Geriatric congenital heart disease: burden of disease and predictors of mortality. J Am Coll Cardiol. 2011;58(14):1509–15.  https://doi.org/10.1016/j.jacc.2011.06.041.CrossRefPubMedGoogle Scholar
  53. 53.
    Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56(14):1149–57.  https://doi.org/10.1016/j.jacc.2010.03.085.CrossRefPubMedGoogle Scholar
  54. 54.
    Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130(9):749–56.  https://doi.org/10.1161/CIRCULATIONAHA.113.008396.CrossRefPubMedGoogle Scholar
  55. 55.
    Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115(2):163–72.  https://doi.org/10.1161/CIRCULATIONAHA.106.627224.CrossRefPubMedGoogle Scholar
  56. 56.
    Stulak JM, Dearani JA, Burkhart HM, Ammash NM, Phillips SD, Schaff HV. Coronary artery disease in adult congenital heart disease: outcome after coronary artery bypass grafting. Ann Thorac Surg. 2012;93(1):116–22; discussion 22–3.  https://doi.org/10.1016/j.athoracsur.2011.09.013.CrossRefPubMedGoogle Scholar
  57. 57.
    Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to develop guidelines on the Management of Adults with Congenital Heart Disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(23):e143–263.  https://doi.org/10.1016/j.jacc.2008.10.001.CrossRefPubMedGoogle Scholar
  58. 58.
    Tutarel O, Kempny A, Alonso-Gonzalez R, Jabbour R, Li W, Uebing A, et al. Congenital heart disease beyond the age of 60: emergence of a new population with high resource utilization, high morbidity, and high mortality. Eur Heart J. 2014;35(11):725–32.  https://doi.org/10.1093/eurheartj/eht257.CrossRefPubMedGoogle Scholar
  59. 59.
    van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ. The changing epidemiology of congenital heart disease. Nat Rev Cardiol. 2011;8(1):50–60.  https://doi.org/10.1038/nrcardio.2010.166.CrossRefPubMedGoogle Scholar
  60. 60.
    Warnes CA. The adult with congenital heart disease: born to be bad? J Am Coll Cardiol. 2005;46(1):1–8.  https://doi.org/10.1016/j.jacc.2005.02.083.CrossRefPubMedGoogle Scholar
  61. 61.
    Holst KA, Dearani JA, Burkhart HM, Connolly HM, Warnes CA, Li Z, et al. Risk factors and early outcomes of multiple reoperations in adults with congenital heart disease. Ann Thorac Surg. 2011;92(1):122–8; discussion 9–30.  https://doi.org/10.1016/j.athoracsur.2011.03.102.CrossRefPubMedGoogle Scholar
  62. 62.
    Mackie AS, Pilote L, Ionescu-Ittu R, Rahme E, Marelli AJ. Health care resource utilization in adults with congenital heart disease. Am J Cardiol. 2007;99(6):839–43.  https://doi.org/10.1016/j.amjcard.2006.10.054.CrossRefPubMedGoogle Scholar
  63. 63.
    Gherardi GG, Iball GR, Darby MJ, Thomson JD. Cardiac computed tomography and conventional angiography in the diagnosis of congenital cardiac disease in children: recent trends and radiation doses. Cardiol Young. 2011;21(6):616–22.  https://doi.org/10.1017/S1047951111000485.CrossRefPubMedGoogle Scholar
  64. 64.
    Han BK, Lesser AM, Vezmar M, Rosenthal K, Rutten-Ramos S, Lindberg J, et al. Cardiovascular imaging trends in congenital heart disease: a single center experience. J Cardiovasc Comput Tomogr. 2013;7(6):361–6.  https://doi.org/10.1016/j.jcct.2013.11.002.CrossRefPubMedGoogle Scholar
  65. 65.
    Watson TG, Mah E, Joseph Schoepf U, King L, Huda W, Hlavacek AM. Effective radiation dose in computed tomographic angiography of the chest and diagnostic cardiac catheterization in pediatric patients. Pediatr Cardiol. 2013;34(3):518–24.  https://doi.org/10.1007/s00246-012-0486-2.CrossRefPubMedGoogle Scholar
  66. 66.
    Greenberg SB. Rebalancing the risks of computed tomography and magnetic resonance imaging. Pediatr Radiol. 2011;41(8):951–2.  https://doi.org/10.1007/s00247-011-2159-3.CrossRefPubMedGoogle Scholar
  67. 67.
    Carson JL, Kelley MA, Duff A, Weg JG, Fulkerson WJ, Palevsky HI, et al. The clinical course of pulmonary embolism. N Engl J Med. 1992;326(19):1240–5.  https://doi.org/10.1056/NEJM199205073261902.CrossRefPubMedGoogle Scholar
  68. 68.
    Horlander KT, Mannino DM, Leeper KV. Pulmonary embolism mortality in the United States, 1979-1998: an analysis using multiple-cause mortality data. Arch Intern Med. 2003;163(14):1711–7.  https://doi.org/10.1001/archinte.163.14.1711.CrossRefPubMedGoogle Scholar
  69. 69.
    Bettmann MA, Baginski SG, White RD, Woodard PK, Abbara S, Atalay MK, et al. ACR appropriateness criteria(R) acute chest pain—suspected pulmonary embolism. J Thorac Imaging. 2012;27(2):W28–31.  https://doi.org/10.1097/RTI.0b013e31823efeb6.CrossRefPubMedGoogle Scholar
  70. 70.
    Remy-Jardin M, Pistolesi M, Goodman LR, Gefter WB, Gottschalk A, Mayo JR, et al. Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner society. Radiology. 2007;245(2):315–29.  https://doi.org/10.1148/radiol.2452070397.CrossRefPubMedGoogle Scholar
  71. 71.
    Quiroz R, Kucher N, Zou KH, Kipfmueller F, Costello P, Goldhaber SZ, et al. Clinical validity of a negative computed tomography scan in patients with suspected pulmonary embolism: a systematic review. JAMA. 2005;293(16):2012–7.  https://doi.org/10.1001/jama.293.16.2012.CrossRefPubMedGoogle Scholar
  72. 72.
    Perrier A, Nendaz MR, Sarasin FP, Howarth N, Bounameaux H. Cost-effectiveness analysis of diagnostic strategies for suspected pulmonary embolism including helical computed tomography. Am J Respir Crit Care Med. 2003;167(1):39–44.  https://doi.org/10.1164/rccm.2106128.CrossRefPubMedGoogle Scholar
  73. 73.
    Schwickert HC, Schweden F, Schild HH, Piepenburg R, Duber C, Kauczor HU, et al. Pulmonary arteries and lung parenchyma in chronic pulmonary embolism: preoperative and postoperative CT findings. Radiology. 1994;191(2):351–7.  https://doi.org/10.1148/radiology.191.2.8153305.CrossRefPubMedGoogle Scholar
  74. 74.
    Lang IM. Chronic thromboembolic pulmonary hypertension—not so rare after all. N Engl J Med. 2004;350(22):2236–8.  https://doi.org/10.1056/NEJMp048088.CrossRefPubMedGoogle Scholar
  75. 75.
    Auger WR, Fedullo PF, Moser KM, Buchbinder M, Peterson KL. Chronic major-vessel thromboembolic pulmonary artery obstruction: appearance at angiography. Radiology. 1992;182(2):393–8.  https://doi.org/10.1148/radiology.182.2.1732955.CrossRefPubMedGoogle Scholar
  76. 76.
    Tardivon AA, Musset D, Maitre S, Brenot F, Dartevelle P, Simonneau G, et al. Role of CT in chronic pulmonary embolism: comparison with pulmonary angiography. J Comput Assist Tomogr. 1993;17(3):345–51.CrossRefPubMedGoogle Scholar
  77. 77.
    Bergin CJSC, Hauschildt JP, Huynh TV, Auger WR, Fedullo PF, Kapelanski DP. Chronic thromboembolism: diagnosis with helical CT and MR imaging with angiographic and surgical correlation. Radiology. 1997;204(3):695–702.  https://doi.org/10.1148/radiology.204.3.9280245.CrossRefPubMedGoogle Scholar
  78. 78.
    Ley S, Kauczor HU, Heussel CP, Kramm T, Mayer E, Thelen M, et al. Value of contrast-enhanced MR angiography and helical CT angiography in chronic thromboembolic pulmonary hypertension. Eur Radiol. 2003;13(10):2365–71.  https://doi.org/10.1007/s00330-003-1878-8.CrossRefPubMedGoogle Scholar
  79. 79.
    Bergin CJ, Sirlin C, Deutsch R, Fedullo P, Hauschildt J, Huynh T, et al. Predictors of patient response to pulmonary thromboendarterectomy. AJR Am J Roentgenol. 2000;174(2):509–15.  https://doi.org/10.2214/ajr.174.2.1740509.CrossRefPubMedGoogle Scholar
  80. 80.
    Heinrich M, Uder M, Tscholl D, Grgic A, Kramann B, Schafers HJ. CT scan findings in chronic thromboembolic pulmonary hypertension: predictors of hemodynamic improvement after pulmonary thromboendarterectomy. Chest. 2005;127(5):1606–13.  https://doi.org/10.1378/chest.127.5.1606.CrossRefPubMedGoogle Scholar
  81. 81.
    Oikonomou A, Dennie CJ, Muller NL, Seely JM, Matzinger FR, Rubens FD. Chronic thromboembolic pulmonary arterial hypertension: correlation of postoperative results of thromboendarterectomy with preoperative helical contrast-enhanced computed tomography. J Thorac Imaging. 2004;19(2):67–73.CrossRefPubMedGoogle Scholar
  82. 82.
    Apfaltrer P, Sudarski S, Schneider D, Nance JW Jr, Haubenreisser H, Fink C, et al. Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol. 2014;83(2):322–8.  https://doi.org/10.1016/j.ejrad.2013.11.005.CrossRefPubMedGoogle Scholar
  83. 83.
    Delesalle MA, Pontana F, Duhamel A, Faivre JB, Flohr T, Tacelli N, et al. Spectral optimization of chest CT angiography with reduced iodine load: experience in 80 patients evaluated with dual-source, dual-energy CT. Radiology. 2013;267(1):256–66.  https://doi.org/10.1148/radiol.12120195.CrossRefPubMedGoogle Scholar
  84. 84.
    Ameli-Renani S, Rahman F, Nair A, Ramsay L, Bacon JL, Weller A, et al. Dual-energy CT for imaging of pulmonary hypertension: challenges and opportunities. Radiographics. 2014;34(7):1769–90.  https://doi.org/10.1148/rg.347130085.CrossRefPubMedGoogle Scholar
  85. 85.
    Dournes G, Verdier D, Montaudon M, Bullier E, Riviere A, Dromer C, et al. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: diagnostic accuracy and concordance with radionuclide scintigraphy. Eur Radiol. 2014;24(1):42–51.  https://doi.org/10.1007/s00330-013-2975-y.CrossRefPubMedGoogle Scholar
  86. 86.
    Ameli-Renani S, Ramsay L, Bacon JL, Rahman F, Nair A, Smith V, et al. Dual-energy computed tomography in the assessment of vascular and parenchymal enhancement in suspected pulmonary hypertension. J Thorac Imaging. 2014;29(2):98–106.  https://doi.org/10.1097/RTI.0000000000000061.CrossRefPubMedGoogle Scholar
  87. 87.
    Litmanovich D, Bankier AA, Cantin L, Raptopoulos V, Boiselle PM. CT and MRI in diseases of the aorta. AJR Am J Roentgenol. 2009;193(4):928–40.  https://doi.org/10.2214/AJR.08.2166.CrossRefPubMedGoogle Scholar
  88. 88.
    Agarwal PP, Chughtai A, Matzinger FR, Kazerooni EA. Multidetector CT of thoracic aortic aneurysms. Radiographics. 2009;29(2):537–52.  https://doi.org/10.1148/rg.292075080.CrossRefPubMedGoogle Scholar
  89. 89.
    Litmanovich D, Zamboni GA, Hauser TH, Lin PJ, Clouse ME, Raptopoulos V. ECG-gated chest CT angiography with 64-MDCT and tri-phasic IV contrast administration regimen in patients with acute non-specific chest pain. Eur Radiol. 2008;18(2):308–17.  https://doi.org/10.1007/s00330-007-0739-2.CrossRefPubMedGoogle Scholar
  90. 90.
    Yoshioka K, Niinuma H, Ehara S, Nakajima T, Nakamura M, Kawazoe K. MR angiography and CT angiography of the artery of Adamkiewicz: state of the art. Radiographics. 2006;26(Suppl 1):S63–73.  https://doi.org/10.1148/rg.26si065506.CrossRefPubMedGoogle Scholar
  91. 91.
    Abbara S, Kalva S, Cury RC, Isselbacher EM. Thoracic aortic disease: spectrum of multidetector computed tomography imaging findings. J Cardiovasc Comput Tomogr. 2007;1(1):40–54.  https://doi.org/10.1016/j.jcct.2007.04.003.CrossRefPubMedGoogle Scholar
  92. 92.
    Morales JP, Greenberg RK, Lu Q, Cury M, Hernandez AV, Mohabbat W, Moon MC, Morales CA, Bathurst S, Schoenhagen P. Endoleaks following endovascular repair of thoracic aortic aneurysm: etiology and outcomes. J Endovasc Ther. 2008;15(6):631–8. https://doi:10.1583/08-2551.1. PubMed PMID: 19090634.Google Scholar
  93. 93.
    Jassal DS, Shapiro MD, Neilan TG, Chaithiraphan V, Ferencik M, Teague SD, et al. 64-slice multidetector computed tomography (MDCT) for detection of aortic regurgitation and quantification of severity. Investig Radiol. 2007;42(7):507–12.  https://doi.org/10.1097/RLI.0b013e3180375556.CrossRefGoogle Scholar
  94. 94.
    Laissy JP, Messika-Zeitoun D, Serfaty JM, Sebban V, Schouman-Claeys E, Iung B, et al. Comprehensive evaluation of preoperative patients with aortic valve stenosis: usefulness of cardiac multidetector computed tomography. Heart. 2007;93(9):1121–5.  https://doi.org/10.1136/hrt.2006.107284.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Batra P, Bigoni B, Manning J, Aberle DR, Brown K, Hart E, et al. Pitfalls in the diagnosis of thoracic aortic dissection at CT angiography. Radiographics. 2000;20(2):309–20.  https://doi.org/10.1148/radiographics.20.2.g00mc04309.CrossRefPubMedGoogle Scholar
  96. 96.
    Prescott-Focht JA, Martinez-Jimenez S, Hurwitz LM, Hoang JK, Christensen JD, Ghoshhajra BB, et al. Ascending thoracic aorta: postoperative imaging evaluation. Radiographics. 2013;33(1):73–85.  https://doi.org/10.1148/rg.331125090.CrossRefPubMedGoogle Scholar
  97. 97.
    Novelline RA, Rhea JT, Rao PM, Stuk JL. Helical CT in emergency radiology. Radiology. 1999;213(2):321–39.  https://doi.org/10.1148/radiology.213.2.r99nv01321.CrossRefPubMedGoogle Scholar
  98. 98.
    White CS, Kuo D, Kelemen M, Jain V, Musk A, Zaidi E, et al. Chest pain evaluation in the emergency department: can MDCT provide a comprehensive evaluation? AJR Am J Roentgenol. 2005;185(2):533–40.  https://doi.org/10.2214/ajr.185.2.01850533.CrossRefPubMedGoogle Scholar
  99. 99.
    Meinel FG, Nikolaou K, Weidenhagen R, Hellbach K, Helck A, Bamberg F, et al. Time-resolved CT angiography in aortic dissection. Eur J Radiol. 2012;81(11):3254–61.  https://doi.org/10.1016/j.ejrad.2012.03.006.CrossRefPubMedGoogle Scholar
  100. 100.
    Sommer T, Fehske W, Holzknecht N, Smekal AV, Keller E, Lutterbey G, et al. Aortic dissection: a comparative study of diagnosis with spiral CT, multiplanar transesophageal echocardiography, and MR imaging. Radiology. 1996;199(2):347–52.  https://doi.org/10.1148/radiology.199.2.8668776.CrossRefPubMedGoogle Scholar
  101. 101.
    Kaji S, Akasaka T, Horibata Y, Nishigami K, Shono H, Katayama M, et al. Long-term prognosis of patients with type a aortic intramural hematoma. Circulation. 2002;106(12 Suppl 1):I248–52.PubMedGoogle Scholar
  102. 102.
    Kaji S, Nishigami K, Akasaka T, Hozumi T, Takagi T, Kawamoto T, et al. Prediction of progression or regression of type a aortic intramural hematoma by computed tomography. Circulation. 1999;100(19 Suppl):II281–6.PubMedGoogle Scholar
  103. 103.
    Johnson TR, Nikolaou K, Wintersperger BJ, Knez A, Boekstegers P, Reiser MF, et al. ECG-gated 64-MDCT angiography in the differential diagnosis of acute chest pain. AJR Am J Roentgenol. 2007;188(1):76–82.  https://doi.org/10.2214/AJR.05.1153.CrossRefPubMedGoogle Scholar
  104. 104.
    Choi SH, Choi SJ, Kim JH, Bae SJ, Lee JS, Song KS, et al. Useful CT findings for predicting the progression of aortic intramural hematoma to overt aortic dissection. J Comput Assist Tomogr. 2001;25(2):295–9.CrossRefPubMedGoogle Scholar
  105. 105.
    Cho KR, Stanson AW, Potter DD, Cherry KJ, Schaff HV, Sundt TM 3rd. Penetrating atherosclerotic ulcer of the descending thoracic aorta and arch. J Thorac Cardiovasc Surg. 2004;127(5):1393–9; discussion 9–401.  https://doi.org/10.1016/j.jtcvs.2003.11.050.CrossRefPubMedGoogle Scholar
  106. 106.
    O'Gara PT, DeSanctis RW. Acute aortic dissection and its variants. Toward a common diagnostic and therapeutic approach. Circulation. 1995;92(6):1376–8.CrossRefPubMedGoogle Scholar
  107. 107.
    Sueyoshi E, Imada T, Sakamoto I, Matsuoka Y, Hayashi K. Analysis of predictive factors for progression of type B aortic intramural hematoma with computed tomography. J Vasc Surg. 2002;35(6):1179–83.CrossRefPubMedGoogle Scholar
  108. 108.
    Tittle SL, Lynch RJ, Cole PE, Singh HS, Rizzo JA, Kopf GS, et al. Midterm follow-up of penetrating ulcer and intramural hematoma of the aorta. J Thorac Cardiovasc Surg. 2002;123(6):1051–9.Google Scholar
  109. 109.
    Hayashi H, Matsuoka Y, Sakamoto I, Sueyoshi E, Okimoto T, Hayashi K, et al. Penetrating atherosclerotic ulcer of the aorta: imaging features and disease concept. Radiographics. 2000;20(4):995–1005.  https://doi.org/10.1148/radiographics.20.4.g00jl01995.CrossRefPubMedGoogle Scholar
  110. 110.
    Godoy MC, Naidich DP, Marchiori E, Leidecker C, Schmidt B, Assadourian B, et al. Single-acquisition dual-energy multidetector computed tomography: analysis of vascular enhancement and postprocessing techniques for evaluating the thoracic aorta. J Comput Assist Tomogr. 2010;34(5):670–7.  https://doi.org/10.1097/RCT.0b013e3181e10627.CrossRefPubMedGoogle Scholar
  111. 111.
    Numburi UD, Schoenhagen P, Flamm SD, Greenberg RK, Primak AN, Saba OI, et al. Feasibility of dual-energy CT in the arterial phase: imaging after endovascular aortic repair. AJR Am J Roentgenol. 2010;195(2):486–93.  https://doi.org/10.2214/AJR.09.3872.CrossRefPubMedGoogle Scholar
  112. 112.
    Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M, et al. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology. 2008;249(2):682–91.  https://doi.org/10.1148/radiol.2483080193.CrossRefPubMedGoogle Scholar
  113. 113.
    Brown KK. Pulmonary vasculitis. Proc Am Thorac Soc. 2006;3(1):48–57.  https://doi.org/10.1513/pats.200511-120JH.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Hansell DM. Small-vessel diseases of the lung: CT-pathologic correlates. Radiology. 2002;225(3):639–53.  https://doi.org/10.1148/radiol.2253011490.CrossRefPubMedGoogle Scholar
  115. 115.
    Chung MP, Yi CA, Lee HY, Han J, Lee KS. Imaging of pulmonary vasculitis. Radiology. 2010;255(2):322–41.  https://doi.org/10.1148/radiol.10090105.CrossRefPubMedGoogle Scholar
  116. 116.
    Schmidt WA. Imaging in vasculitis. Best Pract Res Clin Rheumatol. 2013;27(1):107–18.  https://doi.org/10.1016/j.berh.2013.01.001.CrossRefPubMedGoogle Scholar
  117. 117.
    Allen CM, Al-Jahdali HH, Irion KL, Al Ghanem S, Gouda A, Khan AN. Imaging lung manifestations of HIV/AIDS. Ann Thorac Med. 2010;5(4):201–16.  https://doi.org/10.4103/1817-1737.69106.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Boiselle PM, Tocino I, Hooley RJ, Pumerantz AS, Selwyn PA, Neklesa VP, et al. Chest radiograph interpretation of pneumocystis carinii pneumonia, bacterial pneumonia, and pulmonary tuberculosis in HIV-positive patients: accuracy, distinguishing features, and mimics. J Thorac Imaging. 1997;12(1):47–53.CrossRefPubMedGoogle Scholar
  119. 119.
    Hartman TE, Primack SL, Muller NL, Staples CA. Diagnosis of thoracic complications in AIDS: accuracy of CT. AJR Am J Roentgenol. 1994;162(3):547–53.  https://doi.org/10.2214/ajr.162.3.8109494.CrossRefPubMedGoogle Scholar
  120. 120.
    Kang EY, Staples CA, McGuinness G, Primack SL, Muller NL. Detection and differential diagnosis of pulmonary infections and tumors in patients with AIDS: value of chest radiography versus CT. AJR Am J Roentgenol. 1996;166(1):15–9.  https://doi.org/10.2214/ajr.166.1.8571866.CrossRefPubMedGoogle Scholar
  121. 121.
    Edinburgh KJ, Jasmer RM, Huang L, Reddy GP, Chung MH, Thompson A, et al. Multiple pulmonary nodules in AIDS: usefulness of CT in distinguishing among potential causes. Radiology. 2000;214(2):427–32.  https://doi.org/10.1148/radiology.214.2.r00fe22427.CrossRefPubMedGoogle Scholar
  122. 122.
    Tortoriello TA, Friedman JD, McKenzie ED, Fraser CD, Feltes TF, Randall J, et al. Mediastinitis after pediatric cardiac surgery: a 15-year experience at a single institution. Ann Thorac Surg. 2003;76(5):1655–60.CrossRefPubMedGoogle Scholar
  123. 123.
    Braxton JH, Marrin CA, McGrath PD, Ross CS, Morton JR, Norotsky M, et al. Mediastinitis and long-term survival after coronary artery bypass graft surgery. Ann Thorac Surg. 2000;70(6):2004–7.CrossRefPubMedGoogle Scholar
  124. 124.
    Akman C, Kantarci F, Cetinkaya S. Imaging in mediastinitis: a systematic review based on aetiology. Clin Radiol. 2004;59(7):573–85.  https://doi.org/10.1016/j.crad.2003.12.001.CrossRefPubMedGoogle Scholar
  125. 125.
    Abboud CS, Wey SB, Baltar VT. Risk factors for mediastinitis after cardiac surgery. Ann Thorac Surg. 2004;77(2):676–83.  https://doi.org/10.1016/S0003-4975(03)01523-6.CrossRefPubMedGoogle Scholar
  126. 126.
    Jolles H, Henry DA, Roberson JP, Cole TJ, Spratt JA. Mediastinitis following median sternotomy: CT findings. Radiology. 1996;201(2):463–6.  https://doi.org/10.1148/radiology.201.2.8888241.CrossRefPubMedGoogle Scholar
  127. 127.
    Macedo CABM, Uezumi KK, Castro CC, Lucarelli CL, Cerri GG. Acute mediastinitis: multidetector computed tomography findings following cardiac surgery. Radiol Bras. 2008;41(4):269–73.CrossRefGoogle Scholar
  128. 128.
    Merrill WH, Akhter SA, Wolf RK, Schneeberger EW, Flege JB Jr. Simplified treatment of postoperative mediastinitis. Ann Thorac Surg. 2004;78(2):608–12; discussion -12.  https://doi.org/10.1016/j.athoracsur.2004.02.089.CrossRefPubMedGoogle Scholar
  129. 129.
    Henry DA. International labor office classification system in the age of imaging: relevant or redundant. J Thorac Imaging. 2002;17(3):179–88.CrossRefPubMedGoogle Scholar
  130. 130.
    Hansell DM. Computed tomography of diffuse lung disease: functional correlates. Eur Radiol. 2001;11(9):1666–80.  https://doi.org/10.1007/s003300100880.CrossRefPubMedGoogle Scholar
  131. 131.
    Lynch DA, Godwin JD, Safrin S, Starko KM, Hormel P, Brown KK, et al. High-resolution computed tomography in idiopathic pulmonary fibrosis: diagnosis and prognosis. Am J Respir Crit Care Med. 2005;172(4):488–93.  https://doi.org/10.1164/rccm.200412-1756OC.CrossRefPubMedGoogle Scholar
  132. 132.
    Cox CW, Rose CS, Lynch DA. State of the art: imaging of occupational lung disease. Radiology. 2014;270(3):681–96.  https://doi.org/10.1148/radiol.13121415.CrossRefPubMedGoogle Scholar
  133. 133.
    Hering KG, Tuengerthal S, Kraus T. Standardized CT/HRCT-classification of the German Federal Republic for work and environmental related thoracic diseases. Radiologe. 2004;44(5):500–11.  https://doi.org/10.1007/s00117-004-1027-7.CrossRefPubMedGoogle Scholar
  134. 134.
    Huuskonen O, Kivisaari L, Zitting A, Taskinen K, Tossavainen A, Vehmas T. High-resolution computed tomography classification of lung fibrosis for patients with asbestos-related disease. Scand J Work Environ Health. 2001;27(2):106–12.CrossRefPubMedGoogle Scholar
  135. 135.
    Kraus T, Borsch-Galetke E, Elliehausen HJ, Frank K, Hering KG, Hieckel HG, et al. Recommendations for reporting benign asbestos-related findings in chest X-ray and CT to the accident insurances. Pneumologie. 2009;63(12):726–32.  https://doi.org/10.1055/s-0029-1215322.CrossRefPubMedGoogle Scholar
  136. 136.
    Suganuma N, Kusaka Y, Hering KG, Vehmas T, Kraus T, Parker JE, et al. Selection of reference films based on reliability assessment of a classification of high-resolution computed tomography for pneumoconioses. Int Arch Occup Environ Health. 2006;79(6):472–6.  https://doi.org/10.1007/s00420-005-0067-2.CrossRefPubMedGoogle Scholar
  137. 137.
    Suganuma N, Kusaka Y, Hering KG, Vehmas T, Kraus T, Arakawa H, et al. Reliability of the proposed international classification of high-resolution computed tomography for occupational and environmental respiratory diseases. J Occup Health. 2009;51(3):210–22.CrossRefPubMedGoogle Scholar
  138. 138.
    Das M, Muhlenbruch G, Mahnken AH, Hering KG, Sirbu H, Zschiesche W, et al. Asbestos surveillance program Aachen (ASPA): initial results from baseline screening for lung cancer in asbestos-exposed high-risk individuals using low-dose multidetector-row CT. Eur Radiol. 2007;17(5):1193–9.  https://doi.org/10.1007/s00330-006-0426-8.CrossRefPubMedGoogle Scholar
  139. 139.
    Tiitola M, Kivisaari L, Zitting A, Huuskonen MS, Kaleva S, Tossavainen A, et al. Computed tomography of asbestos-related pleural abnormalities. Int Arch Occup Environ Health. 2002;75(4):224–8.  https://doi.org/10.1007/s00420-001-0297-x.CrossRefPubMedGoogle Scholar
  140. 140.
    Landrigan PJ. Asbestos--still a carcinogen. N Engl J Med. 1998;338(22):1618–9.  https://doi.org/10.1056/NEJM199805283382209.CrossRefPubMedGoogle Scholar
  141. 141.
    Cavallazzi KG. Mesothelioma and other asbestos-related pleural diseases. Pulm Dis. 2008;13:5.Google Scholar
  142. 142.
    Rusch VW, Godwin JD, Shuman WP. The role of computed tomography scanning in the initial assessment and the follow-up of malignant pleural mesothelioma. J Thorac Cardiovasc Surg. 1988;96(1):171–7.PubMedGoogle Scholar
  143. 143.
    Wang ZJ, Reddy GP, Gotway MB, Higgins CB, Jablons DM, Ramaswamy M, et al. Malignant pleural mesothelioma: evaluation with CT, MR imaging, and PET. Radiographics. 2004;24(1):105–19.  https://doi.org/10.1148/rg.241035058.CrossRefPubMedGoogle Scholar
  144. 144.
    Friedman AC, Fiel SB, Fisher MS, Radecki PD, Lev-Toaff AS, Caroline DF. Asbestos-related pleural disease and asbestosis: a comparison of CT and chest radiography. AJR Am J Roentgenol. 1988;150(2):269–75.  https://doi.org/10.2214/ajr.150.2.269.CrossRefPubMedGoogle Scholar
  145. 145.
    Akira M, Yamamoto S, Inoue Y, Sakatani M. High-resolution CT of asbestosis and idiopathic pulmonary fibrosis. AJR Am J Roentgenol. 2003;181(1):163–9.  https://doi.org/10.2214/ajr.181.1.1810163.CrossRefPubMedGoogle Scholar
  146. 146.
    Meyer KC. Diagnosis and management of interstitial lung disease. Transl Respir Med. 2014;2:4.  https://doi.org/10.1186/2213-0802-2-4.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Meyer KC. Interstitial lung disease in the elderly: pathogenesis, diagnosis and management. Sarcoidosis Vasc Diffuse Lung Dis. 2011;28(1):3–17.PubMedGoogle Scholar
  148. 148.
    Kanne JP. Interstitial lung disease (ILD): imaging finding, and the role of imaging in evaluating the patient with known or suspected ILD. Semin Roentgenol. 2010;45(1):3.  https://doi.org/10.1053/j.ro.2009.09.001.CrossRefPubMedGoogle Scholar
  149. 149.
    Hodnett PA, Naidich DP. Fibrosing interstitial lung disease. A practical high-resolution computed tomography-based approach to diagnosis and management and a review of the literature. Am J Respir Crit Care Med. 2013;188(2):141–9.  https://doi.org/10.1164/rccm.201208-1544CI.CrossRefPubMedGoogle Scholar
  150. 150.
    Meyer KC, Raghu G, Baughman RP, Brown KK, Costabel U, du Bois RM, et al. An official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med. 2012;185(9):1004–14.  https://doi.org/10.1164/rccm.201202-0320ST.CrossRefPubMedGoogle Scholar
  151. 151.
    Edey AJ, Devaraj AA, Barker RP, Nicholson AG, Wells AU, Hansell DM. Fibrotic idiopathic interstitial pneumonias: HRCT findings that predict mortality. Eur Radiol. 2011;21(8):1586–93.  https://doi.org/10.1007/s00330-011-2098-2.CrossRefPubMedGoogle Scholar
  152. 152.
    Woodhead F, Wells AU, Desai SR. Pulmonary complications of connective tissue diseases. Clin Chest Med. 2008;29(1):149–64, vii.  https://doi.org/10.1016/j.ccm.2007.11.009.CrossRefPubMedGoogle Scholar
  153. 153.
    Capobianco J, Grimberg A, Thompson BM, Antunes VB, Jasinowodolinski D, Meirelles GS. Thoracic manifestations of collagen vascular diseases. Radiographics. 2012;32(1):33–50.  https://doi.org/10.1148/rg.321105058.CrossRefPubMedGoogle Scholar
  154. 154.
    Visscher DW, Myers JL. Bronchiolitis: the pathologist’s perspective. Proc Am Thorac Soc. 2006;3(1):41–7.  https://doi.org/10.1513/pats.200512-124JH.CrossRefPubMedGoogle Scholar
  155. 155.
    Abbott GF, Rosado-de-Christenson ML, Rossi SE, Suster S. Imaging of small airways disease. J Thorac Imaging. 2009;24(4):285–98.  https://doi.org/10.1097/RTI.0b013e3181c1ab83.CrossRefPubMedGoogle Scholar
  156. 156.
    Lynch DA. Imaging of small airways disease and chronic obstructive pulmonary disease. Clin Chest Med. 2008;29(1):165–79, vii.  https://doi.org/10.1016/j.ccm.2007.11.008.CrossRefPubMedGoogle Scholar
  157. 157.
    Boiselle PM, Feller-Kopman D, Ashiku S, Weeks D, Ernst A. Tracheobronchomalacia: evolving role of dynamic multislice helical CT. Radiol Clin N Am. 2003;41(3):627–36.CrossRefPubMedGoogle Scholar
  158. 158.
    Carden KA, Boiselle PM, Waltz DA, Ernst A. Tracheomalacia and tracheobronchomalacia in children and adults: an in-depth review. Chest. 2005;127(3):984–1005.  https://doi.org/10.1378/chest.127.3.984.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Lee KS, Ernst A, Trentham DE, Lunn W, Feller-Kopman DJ, Boiselle PM. Relapsing polychondritis: prevalence of expiratory CT airway abnormalities. Radiology. 2006;240(2):565–73.  https://doi.org/10.1148/radiol.2401050562.CrossRefPubMedGoogle Scholar
  160. 160.
    Hein E, Rogalla P, Hentschel C, Taupitz M, Hamm B. Dynamic and quantitative assessment of tracheomalacia by electron beam tomography: correlation with clinical symptoms and bronchoscopy. J Comput Assist Tomogr. 2000;24(2):247–52.CrossRefPubMedGoogle Scholar
  161. 161.
    Boiselle PM. Multislice helical CT of the central airways. Radiol Clin N Am. 2003;41(3):561–74.CrossRefPubMedGoogle Scholar
  162. 162.
    Boiselle PM. Imaging of the large airways. Clin Chest Med. 2008;29(1):181–93, vii.  https://doi.org/10.1016/j.ccm.2007.11.002.CrossRefPubMedGoogle Scholar
  163. 163.
    Boiselle PM, Ernst A. State-of-the-art imaging of the central airways. Respiration. 2003;70(4):383–94.CrossRefPubMedGoogle Scholar
  164. 164.
    Boiselle PM, Lee KS, Ernst A. Multidetector CT of the central airways. J Thorac Imaging. 2005;20(3):186–95.CrossRefPubMedGoogle Scholar
  165. 165.
    Boiselle PM, Reynolds KF, Ernst A. Multiplanar and three-dimensional imaging of the central airways with multidetector CT. AJR Am J Roentgenol. 2002;179(2):301–8.  https://doi.org/10.2214/ajr.179.2.1790301.CrossRefPubMedGoogle Scholar
  166. 166.
    Lee EY, Siegel MJ. MDCT of tracheobronchial narrowing in pediatric patients. J Thorac Imaging. 2007;22(3):300–9.  https://doi.org/10.1097/RTI.0b013e3180cab6e8.CrossRefPubMedGoogle Scholar
  167. 167.
    Lee EY, Siegel MJ, Hildebolt CF, Gutierrez FR, Bhalla S, Fallah JH. MDCT evaluation of thoracic aortic anomalies in pediatric patients and young adults: comparison of axial, multiplanar, and 3D images. AJR Am J Roentgenol. 2004;182(3):777–84.  https://doi.org/10.2214/ajr.182.3.1820777.CrossRefPubMedGoogle Scholar
  168. 168.
    Siegel MJ. Multiplanar and three-dimensional multi-detector row CT of thoracic vessels and airways in the pediatric population. Radiology. 2003;229(3):641–50.  https://doi.org/10.1148/radiol.2293020999.CrossRefPubMedGoogle Scholar
  169. 169.
    Lee EY, Boiselle PM. Tracheobronchomalacia in infants and children: multidetector CT evaluation. Radiology. 2009;252(1):7–22.  https://doi.org/10.1148/radiol.2513081280.CrossRefPubMedGoogle Scholar
  170. 170.
    Lee EY, Boiselle PM, Cleveland RH. Multidetector CT evaluation of congenital lung anomalies. Radiology. 2008;247(3):632–48.  https://doi.org/10.1148/radiol.2473062124.CrossRefPubMedGoogle Scholar
  171. 171.
    Ramadan HH, Wax MK, Avery S. Outcome and changing cause of unilateral vocal cord paralysis. Otolaryngol Head Neck Surg. 1998;118(2):199–202.  https://doi.org/10.1016/S0194-5998(98)80014-4.CrossRefPubMedGoogle Scholar
  172. 172.
    Yumoto E, Minoda R, Hyodo M, Yamagata T. Causes of recurrent laryngeal nerve paralysis. Auris Nasus Larynx. 2002;29(1):41–5.CrossRefPubMedGoogle Scholar
  173. 173.
    Bando H, Nishio T, Bamba H, Uno T, Hisa Y. Vocal fold paralysis as a sign of chest diseases: a 15-year retrospective study. World J Surg. 2006;30(3):293–8.  https://doi.org/10.1007/s00268-005-7959-x.CrossRefPubMedGoogle Scholar
  174. 174.
    Glazer HS, Aronberg DJ, Lee JK, Sagel SS. Extralaryngeal causes of vocal cord paralysis: CT evaluation. AJR Am J Roentgenol. 1983;141(3):527–31.  https://doi.org/10.2214/ajr.141.3.527.CrossRefPubMedGoogle Scholar
  175. 175.
    Paquette CM, Manos DC, Psooy BJ. Unilateral vocal cord paralysis: a review of CT findings, mediastinal causes, and the course of the recurrent laryngeal nerves. Radiographics. 2012;32(3):721–40.  https://doi.org/10.1148/rg.323115129.CrossRefPubMedGoogle Scholar
  176. 176.
    Pretorius PM, Milford CA. Investigating the hoarse voice. BMJ. 2008;337:a1726.  https://doi.org/10.1136/bmj.a1726.CrossRefPubMedGoogle Scholar
  177. 177.
    Robinson S, Pitkaranta A. Radiology findings in adult patients with vocal fold paralysis. Clin Radiol. 2006;61(10):863–7.  https://doi.org/10.1016/j.crad.2006.02.016.CrossRefPubMedGoogle Scholar
  178. 178.
    Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176(6):532–55.  https://doi.org/10.1164/rccm.200703-456SO.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Litmanovich DE, Hartwick K, Silva M, Bankier AA. Multidetector computed tomographic imaging in chronic obstructive pulmonary disease: emphysema and airways assessment. Radiol Clin N Am. 2014;52(1):137–54.  https://doi.org/10.1016/j.rcl.2013.09.002.CrossRefPubMedGoogle Scholar
  180. 180.
    Matsuoka S, Yamashiro T, Washko GR, Kurihara Y, Nakajima Y, Hatabu H. Quantitative CT assessment of chronic obstructive pulmonary disease. Radiographics. 2010;30(1):55–66.  https://doi.org/10.1148/rg.301095110.CrossRefPubMedGoogle Scholar
  181. 181.
    Mayo JR. CT evaluation of diffuse infiltrative lung disease: dose considerations and optimal technique. J Thorac Imaging. 2009;24(4):252–9.  https://doi.org/10.1097/RTI.0b013e3181c227b2.CrossRefPubMedGoogle Scholar
  182. 182.
    Hackx M, Gyssels E, Severo Garcia T, De Meulder I, Alard S, Bruyneel M, et al. Chronic obstructive pulmonary disease: CT quantification of airway dimensions, numbers of airways to measure, and effect of bronchodilation. Radiology. 2015;277(3):853–62.  https://doi.org/10.1148/radiol.2015140949.CrossRefPubMedGoogle Scholar
  183. 183.
    Albert P, Agusti A, Edwards L, Tal-Singer R, Yates J, Bakke P, et al. Bronchodilator responsiveness as a phenotypic characteristic of established chronic obstructive pulmonary disease. Thorax. 2012;67(8):701–8.  https://doi.org/10.1136/thoraxjnl-2011-201458.CrossRefPubMedGoogle Scholar
  184. 184.
    Venuta F, de Giacomo T, Rendina EA, Ciccone AM, Diso D, Perrone A, et al. Bronchoscopic lung-volume reduction with one-way valves in patients with heterogenous emphysema. Ann Thorac Surg. 2005;79(2):411–6; discussion 6–7.  https://doi.org/10.1016/j.athoracsur.2004.07.048.CrossRefPubMedGoogle Scholar
  185. 185.
    Wood DE, McKenna RJ Jr, Yusen RD, Sterman DH, Ost DE, Springmeyer SC, et al. A multicenter trial of an intrabronchial valve for treatment of severe emphysema. J Thorac Cardiovasc Surg. 2007;133(1):65–73.  https://doi.org/10.1016/j.jtcvs.2006.06.051.CrossRefPubMedGoogle Scholar
  186. 186.
    Fraioli F, Calabrese FA, Venuta F, Anile M, Bertoletti L, Carbone I, et al. MDCT assessment of lung volume in patients undergoing bronchial stenting for treatment of pulmonary emphysema: correlation with respiratory tests and personal experience. Radiol Med. 2006;111(6):749–58.  https://doi.org/10.1007/s11547-006-0078-4.CrossRefPubMedGoogle Scholar
  187. 187.
    Pereira GC, Traughber M, Muzic RF Jr. The role of imaging in radiation therapy planning: past, present, and future. Biomed Res Int. 2014;2014:231090.  https://doi.org/10.1155/2014/231090.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Keall P. 4-dimensional computed tomography imaging and treatment planning. Semin Radiat Oncol. 2004;14(1):81–90.  https://doi.org/10.1053/j.semradonc.2003.10.006.CrossRefPubMedGoogle Scholar
  189. 189.
    Soo E, Edey AJ. The role of thoracic imaging in the intensive care unit. Br J Hosp Med (Lond). 2012;73(11):612–9.CrossRefGoogle Scholar
  190. 190.
    Hill JR, Horner PE, Primack SL. ICU imaging. Clin Chest Med. 2008;29(1):59–76, vi.  https://doi.org/10.1016/j.ccm.2007.11.005.CrossRefPubMedGoogle Scholar
  191. 191.
    Miller WT Jr, Tino G, Friedburg JS. Thoracic CT in the intensive care unit: assessment of clinical usefulness. Radiology. 1998;209(2):491–8.  https://doi.org/10.1148/radiology.209.2.9807579.CrossRefPubMedGoogle Scholar
  192. 192.
    Miller WT Sr. The chest radiograph in the intensive care unit. Semin Roentgenol. 1997;32(2):89–101.CrossRefPubMedGoogle Scholar
  193. 193.
    Mirvis SE, Tobin KD, Kostrubiak I, Belzberg H. Thoracic CT in detecting occult disease in critically ill patients. AJR Am J Roentgenol. 1987;148(4):685–9.  https://doi.org/10.2214/ajr.148.4.685.CrossRefPubMedGoogle Scholar
  194. 194.
    DuBose J, Inaba K, Okoye O, Demetriades D, Scalea T, O'Connor J, et al. Development of posttraumatic empyema in patients with retained hemothorax: results of a prospective, observational AAST study. J Trauma Acute Care Surg. 2012;73(3):752–7.  https://doi.org/10.1097/TA.0b013e31825c1616.CrossRefPubMedGoogle Scholar
  195. 195.
    Hirshberg A, Wall MJ Jr, Ramchandani MK, Mattox KL. Reoperation for bleeding in trauma. Arch Surg. 1993;128(10):1163–7.CrossRefPubMedGoogle Scholar
  196. 196.
    Karmy-Jones R, Holevar M, Sullivan RJ, Fleisig A, Jurkovich GJ. Residual hemothorax after chest tube placement correlates with increased risk of empyema following traumatic injury. Can Respir J. 2008;15(5):255–8.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Awerbuch E, Benavides M, Gershengorn HB. The impact of computed tomography of the chest on the management of patients in a medical intensive care unit. J Intensive Care Med. 2015;30(8):505–11.  https://doi.org/10.1177/0885066614540122.CrossRefPubMedGoogle Scholar
  198. 198.
    Kaewlai R, Avery LL, Asrani AV, Novelline RA. Multidetector CT of blunt thoracic trauma. Radiographics. 2008;28(6):1555–70.  https://doi.org/10.1148/rg.286085510.CrossRefPubMedGoogle Scholar
  199. 199.
    Exadaktylos AK, Sclabas G, Schmid SW, Schaller B, Zimmermann H. Do we really need routine computed tomographic scanning in the primary evaluation of blunt chest trauma in patients with “normal” chest radiograph? J Trauma. 2001;51(6):1173–6.PubMedGoogle Scholar
  200. 200.
    Omert L, Yeaney WW, Protetch J. Efficacy of thoracic computerized tomography in blunt chest trauma. Am Surg. 2001;67(7):660–4.PubMedGoogle Scholar
  201. 201.
    de Moya MA, Seaver C, Spaniolas K, Inaba K, Nguyen M, Veltman Y, et al. Occult pneumothorax in trauma patients: development of an objective scoring system. J Trauma. 2007;63(1):13–7.  https://doi.org/10.1097/TA.0b013e31806864fc.CrossRefPubMedGoogle Scholar
  202. 202.
    Miller LA. Chest wall, lung, and pleural space trauma. Radiol Clin N Am. 2006;44(2):213–24, viii.  https://doi.org/10.1016/j.rcl.2005.10.006.CrossRefPubMedGoogle Scholar
  203. 203.
    Wanek S, Mayberry JC. Blunt thoracic trauma: flail chest, pulmonary contusion, and blast injury. Crit Care Clin. 2004;20(1):71–81.CrossRefPubMedGoogle Scholar
  204. 204.
    Chen JD, Shanmuganathan K, Mirvis SE, Killeen KL, Dutton RP. Using CT to diagnose tracheal rupture. AJR Am J Roentgenol. 2001;176(5):1273–80.  https://doi.org/10.2214/ajr.176.5.1761273.CrossRefPubMedGoogle Scholar
  205. 205.
    Scaglione M, Romano S, Pinto A, Sparano A, Scialpi M, Rotondo A. Acute tracheobronchial injuries: impact of imaging on diagnosis and management implications. Eur J Radiol. 2006;59(3):336–43.  https://doi.org/10.1016/j.ejrad.2006.04.026.CrossRefPubMedGoogle Scholar
  206. 206.
    Wintermark M, Schnyder P. The Macklin effect: a frequent etiology for pneumomediastinum in severe blunt chest trauma. Chest. 2001;120(2):543–7.CrossRefPubMedGoogle Scholar
  207. 207.
    Larici AR, Gotway MB, Litt HI, Reddy GP, Webb WR, Gotway CA, et al. Helical CT with sagittal and coronal reconstructions: accuracy for detection of diaphragmatic injury. AJR Am J Roentgenol. 2002;179(2):451–7.  https://doi.org/10.2214/ajr.179.2.1790451.CrossRefPubMedGoogle Scholar
  208. 208.
    Mirvis SE, Shanmuganagthan K. Imaging hemidiaphragmatic injury. Eur Radiol. 2007;17(6):1411–21.  https://doi.org/10.1007/s00330-006-0553-2.CrossRefPubMedGoogle Scholar
  209. 209.
    Downing SW, Sperling JS, Mirvis SE, Cardarelli MG, Gilbert TB, Scalea TM, et al. Experience with spiral computed tomography as the sole diagnostic method for traumatic aortic rupture. Ann Thorac Surg. 2001;72(2):495–501; discussion -2.CrossRefPubMedGoogle Scholar
  210. 210.
    Loyd JE, Tillman BF, Atkinson JB, Des Prez RM. Mediastinal fibrosis complicating histoplasmosis. Medicine (Baltimore). 1988;67(5):295–310.CrossRefGoogle Scholar
  211. 211.
    Hanley PC, Shub C, Lie JT. Constrictive pericarditis associated with combined idiopathic retroperitoneal and mediastinal fibrosis. Mayo Clin Proc. 1984;59(5):300–4.CrossRefPubMedGoogle Scholar
  212. 212.
    Klisnick A, Fourcade J, Ruivard M, Baud O, Souweine B, Boyer L, et al. Combined idiopathic retroperitoneal and mediastinal fibrosis with pericardial involvement. Clin Nephrol. 1999;52(1):51–5.PubMedGoogle Scholar
  213. 213.
    Mole TM, Glover J, Sheppard MN. Sclerosing mediastinitis: a report on 18 cases. Thorax. 1995;50(3):280–3.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Rossi SE, McAdams HP, Rosado-de-Christenson ML, Franks TJ, Galvin JR. Fibrosing mediastinitis. Radiographics. 2001;21(3):737–57.  https://doi.org/10.1148/radiographics.21.3.g01ma17737.CrossRefPubMedGoogle Scholar
  215. 215.
    Ferretti GR, Knoplioch J, Bricault I, Brambilla C, Coulomb M. Central airway stenoses: preliminary results of spiral-CT-generated virtual bronchoscopy simulations in 29 patients. Eur Radiol. 1997;7(6):854–9.  https://doi.org/10.1007/s003300050218.CrossRefPubMedGoogle Scholar
  216. 216.
    Kauczor HU, Wolcke B, Fischer B, Mildenberger P, Lorenz J, Thelen M. Three-dimensional helical CT of the tracheobronchial tree: evaluation of imaging protocols and assessment of suspected stenoses with bronchoscopic correlation. AJR Am J Roentgenol. 1996;167(2):419–24.  https://doi.org/10.2214/ajr.167.2.8686619.CrossRefPubMedGoogle Scholar
  217. 217.
    Lee KS, Yoon JH, Kim TK, Kim JS, Chung MP, Kwon OJ. Evaluation of tracheobronchial disease with helical CT with multiplanar and three-dimensional reconstruction: correlation with bronchoscopy. Radiographics. 1997;17(3):555–67.; ; discussion 68–70.  https://doi.org/10.1148/radiographics.17.3.9153696.CrossRefPubMedGoogle Scholar
  218. 218.
    Quint LE, Whyte RI, Kazerooni EA, Martinez FJ, Cascade PN, Lynch JP 3rd, et al. Stenosis of the central airways: evaluation by using helical CT with multiplanar reconstructions. Radiology. 1995;194(3):871–7.  https://doi.org/10.1148/radiology.194.3.7862994.CrossRefPubMedGoogle Scholar
  219. 219.
    Remy J, Remy-Jardin M, Artaud D, Fribourg M. Multiplanar and three-dimensional reconstruction techniques in CT: impact on chest diseases. Eur Radiol. 1998;8(3):335–51.  https://doi.org/10.1007/s003300050391.CrossRefPubMedGoogle Scholar
  220. 220.
    Luoma A, Nelems B. Thoracic outlet syndrome. Thoracic surgery perspective. Neurosurg Clin N Am. 1991;2(1):187–226.CrossRefPubMedGoogle Scholar
  221. 221.
    Poitevin LA. Thoraco-cervico-brachial confined spaces an anatomic study. Ann Chir Main. 1988;7(1):5–13.CrossRefPubMedGoogle Scholar
  222. 222.
    Boezaart AP, Haller A, Laduzenski S, Koyyalamudi VB, Ihnatsenka B, Wright T. Neurogenic thoracic outlet syndrome: a case report and review of the literature. Int J Shoulder Surg. 2010;4(2):27–35.  https://doi.org/10.4103/0973-6042.70817.CrossRefPubMedPubMedCentralGoogle Scholar
  223. 223.
    Matsumura JS, Rilling WS, Pearce WH, Nemcek AA Jr, Vogelzang RL, Yao JS. Helical computed tomography of the normal thoracic outlet. J Vasc Surg. 1997;26(5):776–83.CrossRefPubMedGoogle Scholar
  224. 224.
    Remy-Jardin M, Remy J, Masson P, Bonnel F, Debatselier P, Vinckier L, et al. Helical CT angiography of thoracic outlet syndrome: functional anatomy. AJR Am J Roentgenol. 2000;174(6):1667–74.  https://doi.org/10.2214/ajr.174.6.1741667.CrossRefPubMedGoogle Scholar
  225. 225.
    Demondion X, Bacqueville E, Paul C, Duquesnoy B, Hachulla E, Cotten A. Thoracic outlet: assessment with MR imaging in asymptomatic and symptomatic populations. Radiology. 2003;227(2):461–8.  https://doi.org/10.1148/radiol.2272012111.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of RadiologyAzienda Ospedaliero Universitaria (A.O.U.)CagliariItaly

Personalised recommendations