Advertisement

Randomness and Chaos

  • Cemal AtakanEmail author
  • Rukiye Dağalp
  • Nihan Potas
  • Fikri Öztürk
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

The primary goal of this study is to remind, emphasize and revive the ideas of C. Radhakrishna Rao, inscribed in his words “Chance deals with order in disorder while chaos deals with disorder in order”. We will focus upon some concepts such as randomness, probability measure, chaos, fractals, random sequences and complexity. Deterministic phenomena need and use mathematics, stochastic phenomena need and use statistics, at least probability theory, as a modeling device. Analysis of measurements always need statistics. Modeling of some natural phenomena need fractional calculus. Fractional calculus nor stochastic calculus will be used.

Keywords

Randomness Probability measure Random walk Brownian motion Chaos Logistic map Kolmogorov complexity 

References

  1. Alligood, K. T., Sauer, T. D., & Yorke, J. A. (2000). Chaos, an introduction to dynamical systems (3rd ed.). New York: Springer.Google Scholar
  2. Chung, K. L. (1982). Lectures from Markov processes to Brownian motion. New York: Springer.CrossRefGoogle Scholar
  3. Chung, K. L. (2002). Green, Brown, and probability & Brownian motion on the line. River Edge: World Scientific.CrossRefGoogle Scholar
  4. Falconer, K. J. (1985). The geometry of fractal sets. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  5. Falconer, K. J. (2003). Fractal geometry mathematical foundations and applications. Chichester: Wiley.CrossRefGoogle Scholar
  6. Feder, J. (1988). Fractals. New York: Springer Science + Business Media. Google Scholar
  7. Giordano, F. R., & Weir, M. D. (1985). A first course in mathematical modeling. Monterey: Brooks/Cole Publishing Company.Google Scholar
  8. Grigoriu, M. (2002). Stochastic calculus. Boston: Birkhauser.Google Scholar
  9. Kenny, C. (2005). Random number generators: an evaluation and comparison of random.org and some commonly used generators, Trinity College Dublin, Management Science and Information Systems Studies, Project Report.Google Scholar
  10. Kolmogorov, A. N. (1956). Foundations on the theory of probability. New York: Chelsea Publishing Company.Google Scholar
  11. Kuo, H. H. (2000). Introduction to stochastic integration. New York: Springer.Google Scholar
  12. Lowen, S., & Teich, M. C. (2005). Fractal-based point processes. Hoboken: Willey-Interscience.CrossRefGoogle Scholar
  13. Mandelbrot, B. B. (1982). The fractal geometry of nature. San Francisco: WH Freeman & Co.Google Scholar
  14. Murray, J. D. (1993). Mathematical biology. Berlin/New York: Springer.Google Scholar
  15. Oksendal, B. (2003). Stochastic differential equations (6th ed.). Berlin/New York: Springer.CrossRefGoogle Scholar
  16. Rao, C. R. (1997). Statistics and truth puting chance to work. Singapore: World Scientific Publishing Co.CrossRefGoogle Scholar
  17. Wikipedia. Free encyclopedia, https://en.wikipedia.org/

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Cemal Atakan
    • 1
    Email author
  • Rukiye Dağalp
    • 1
  • Nihan Potas
    • 2
  • Fikri Öztürk
    • 3
  1. 1.Ankara University, Department of StatisticsAnkaraTurkey
  2. 2.International Science Association-Ankara, TurkeyGazi UniversityAnkaraTurkey
  3. 3.Ankara University, Modelling and Simulation LabAnkaraTurkey

Personalised recommendations