Skip to main content

Imaging of Infection in the Diabetic Foot

  • Chapter
  • First Online:
Book cover The Diabetic Foot

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

Information derived from imaging studies can play an important role in the management of complicated foot problems in the diabetic patient. This chapter reviews the various modalities available for imaging of the diabetic foot—radiography, nuclear medicine studies such as bone scans, labeled leukocyte scans, bone marrow scans, and FDG PET scans, cross-sectional studies such as MRI, CT, and ultrasound, and various forms of catheter and noninvasive angiography—and highlights their relative strengths and weaknesses for the diagnosis of osteomyelitis, soft tissue infection, and neuroarthropathy. A suggested imaging algorithm for the diagnosis of osteomyelitis in the diabetic foot is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman LG, Waller J, Palestro CJ, Schwartz M, Klein MJ, Hermann G, et al. Unsuspected osteomyelitis in diabetic foot ulcers. Diagnosis and monitoring by leukocyte scanning with indium in 111 oxyquinoline. JAMA. 1991;266(9):1246–51.

    Article  CAS  PubMed  Google Scholar 

  2. Scher KS, Steele FJ. The septic foot in patients with diabetes. Surgery. 1988;104(4):661–6.

    CAS  PubMed  Google Scholar 

  3. Kaufman MW, Bowsher JE. Preventing diabetic foot ulcers. Medsurg Nurs. 1994;3(3):204–10.

    CAS  PubMed  Google Scholar 

  4. Bild DE, Selby JV, Sinnock P, Browner WS, Braveman P, Showstack JA. Lower-extremity amputation in people with diabetes. Epidemiology and prevention. Diabetes Care. 1989;12(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  5. Penn I. Infections in the diabetic foot. In: Sammarco, editor. The foot in diabetes. Philadelphia, PA: Lea & Febiger; 1991. p. 106–23.

    Google Scholar 

  6. Ecker ML, Jacobs BS. Lower extremity amputation in diabetic patients. Diabetes. 1970;19(3):189–95.

    Article  CAS  PubMed  Google Scholar 

  7. Gold RH, Tong DJ, Crim JR, Seeger LL. Imaging the diabetic foot. Skeletal Radiol. 1995;24(8):563–71.

    Article  CAS  PubMed  Google Scholar 

  8. American Diabetes A. Economic costs of diabetes in the U.S. in 2007. Diabetes Care. 2008;31(3):596–615.

    Article  Google Scholar 

  9. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–49.

    Article  CAS  PubMed  Google Scholar 

  10. Horowitz JD, Durham JR, Nease DB, Lukens ML, Wright JG, Smead WL. Prospective evaluation of magnetic resonance imaging in the management of acute diabetic foot infections. Ann Vasc Surg. 1993;7(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  11. Edmonds ME, Roberts VC, Watkins PJ. Blood flow in the diabetic neuropathic foot. Diabetologia. 1982;22(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  12. Murray HJ, Young MJ, Hollis S, Boulton AJ. The association between callus formation, high pressures and neuropathy in diabetic foot ulceration. Diabet Med. 1996;13(11):979–82.

    Article  CAS  PubMed  Google Scholar 

  13. Gooding GA, Stess RM, Graf PM, Moss KM, Louie KS, Grunfeld C. Sonography of the sole of the foot. Evidence for loss of foot pad thickness in diabetes and its relationship to ulceration of the foot. Invest Radiol. 1986;21(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bamberger DM, Daus GP, Gerding DN. Osteomyelitis in the feet of diabetic patients. Long-term results, prognostic factors, and the role of antimicrobial and surgical therapy. Am J Med. 1987;83(4):653–60.

    Article  CAS  PubMed  Google Scholar 

  15. Linklater J, Potter HG. Emergent musculoskeletal magnetic resonance imaging. Top Magn Reson Imaging. 1998;9(4):238–60.

    Article  CAS  PubMed  Google Scholar 

  16. Marcus CD, Ladam-Marcus VJ, Leone J, Malgrange D, Bonnet-Gausserand FM, Menanteau BP. MR imaging of osteomyelitis and neuropathic osteoarthropathy in the feet of diabetics. Radiographics. 1996;16(6):1337–48.

    Article  CAS  PubMed  Google Scholar 

  17. Moore TE, Yuh WT, Kathol MH, el-Khoury GY, Corson JD. Abnormalities of the foot in patients with diabetes mellitus: findings on MR imaging. AJR Am J Roentgenol. 1991;157(4):813–6.

    Article  CAS  PubMed  Google Scholar 

  18. Grayson ML, Gibbons GW, Balogh K, Levin E, Karchmer AW. Probing to bone in infected pedal ulcers. A clinical sign of underlying osteomyelitis in diabetic patients. JAMA. 1995;273(9):721–3.

    Article  CAS  PubMed  Google Scholar 

  19. Mutluoglu M, Uzun G, Sildiroglu O, Turhan V, Mutlu H, Yildiz S. Performance of the probe-to-bone test in a population suspected of having osteomyelitis of the foot in diabetes. J Am Podiatr Med Assoc. 2012;102(5):369–73.

    Article  PubMed  Google Scholar 

  20. Lavery LA, Armstrong DG, Peters EJ, Lipsky BA. Probe-to-bone test for diagnosing diabetic foot osteomyelitis: reliable or relic? Diabetes Care. 2007;30(2):270–4.

    Article  PubMed  Google Scholar 

  21. Lam K, van Asten SA, Nguyen T, La Fontaine J, Lavery LA. Diagnostic accuracy of probe to bone to detect osteomyelitis in the diabetic foot: a systematic review. Clin Infect Dis. 2016;63(7):944–8.

    Article  PubMed  Google Scholar 

  22. Cook TA, Rahim N, Simpson HC, Galland RB. Magnetic resonance imaging in the management of diabetic foot infection. Br J Surg. 1996;83(2):245–8.

    CAS  PubMed  Google Scholar 

  23. Wrobel JS, Connolly JE. Making the diagnosis of osteomyelitis. The role of prevalence. J Am Podiatr Med Assoc. 1998;88(7):337–43.

    Article  CAS  PubMed  Google Scholar 

  24. Dinh MT, Abad CL, Safdar N. Diagnostic accuracy of the physical examination and imaging tests for osteomyelitis underlying diabetic foot ulcers: meta-analysis. Clin Infect Dis. 2008;47(4):519–27.

    Article  PubMed  Google Scholar 

  25. David Smith CGBJ, Iqbal S, Robey S, Pereira M. Medial artery calcification as an indicator of diabetic peripheral vascular disease. Foot Ankle Int. 2008;29(2):185–90.

    Article  PubMed  Google Scholar 

  26. Bonakdar-pour A, Gaines VD. The radiology of osteomyelitis. Orthop Clin North Am. 1983;14(1):21–37.

    Article  CAS  PubMed  Google Scholar 

  27. Palestro CJ, Love C. Nuclear medicine and diabetic foot infections. Semin Nucl Med. 2009;39(1):52–65.

    Article  PubMed  Google Scholar 

  28. Mark J. Kransdorf, Barbara N. Weisman, Marc Appel, Laura W. Bancroft, D. Lee Bennett, Michael A. Bruno, Ian Blair Fries, Curtis W. Hayes, Langston Holly, Jon A. Jacobson, Jonathan S. Luchs, William B. Morrison, Timothy J. Mosher, Mark D. Murphey, Christopher J. Palestro, Catherine C. Roberts, David A. Rubin, David W. Stoller, Michael J. Tuite, Robert J. Ward, James N. Wise, Adam C. Zoga. ACR Appropriateness Criteria Suspected Osteomyelitis of the Foot in Patients with Diabetes Mellitus 2012. Accessed 16 Nov 2016.

    Google Scholar 

  29. Filippi L, Uccioli L, Giurato L, Schillaci O. Diabetic foot infection: usefulness of SPECT/CT for 99mTc-HMPAO-labeled leukocyte imaging. J Nucl Med. 2009;50(7):1042–6.

    Article  PubMed  Google Scholar 

  30. Heiba SI, Kolker D, Mocherla B, Kapoor K, Jiang M, Son H, et al. The optimized evaluation of diabetic foot infection by dual isotope SPECT/CT imaging protocol. J Foot Ankle Surg. 2010;49(6):529–36.

    Article  PubMed  Google Scholar 

  31. Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. AJR Am J Roentgenol. 1992;158(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  32. Love C, Palestro CJ. Nuclear medicine imaging of bone infections. Clin Radiol. 2016;71(7):632–46.

    Article  CAS  PubMed  Google Scholar 

  33. Palestro CJ, Love C, Miller TT. Infection and musculoskeletal conditions: imaging of musculoskeletal infections. Best Pract Res Clin Rheumatol. 2006;20(6):1197–218.

    Article  PubMed  Google Scholar 

  34. Keenan AM, Tindel NL, Alavi A. Diagnosis of pedal osteomyelitis in diabetic patients using current scintigraphic techniques. Arch Intern Med. 1989;149(10):2262–6.

    Article  CAS  PubMed  Google Scholar 

  35. Larcos G, Brown ML, Sutton RT. Diagnosis of osteomyelitis of the foot in diabetic patients: value of 111In-leukocyte scintigraphy. AJR Am J Roentgenol. 1991;157(3):527–31.

    Article  CAS  PubMed  Google Scholar 

  36. McCarthy K, Velchik MG, Alavi A, Mandell GA, Esterhai JL, Goll S. Indium-111-labeled white blood cells in the detection of osteomyelitis complicated by a pre-existing condition. J Nucl Med. 1988;29(6):1015–21.

    CAS  PubMed  Google Scholar 

  37. Maurer AH, Millmond SH, Knight LC, Mesgarzadeh M, Siegel JA, Shuman CR, et al. Infection in diabetic osteoarthropathy: use of indium-labeled leukocytes for diagnosis. Radiology. 1986;161(1):221–5.

    Article  CAS  PubMed  Google Scholar 

  38. Splittgerber GF, Spiegelhoff DR, Buggy BP. Combined leukocyte and bone imaging used to evaluate diabetic osteoarthropathy and osteomyelitis. Clin Nucl Med. 1989;14(3):156–60.

    Article  CAS  PubMed  Google Scholar 

  39. Schauwecker DS, Park HM, Burt RW, Mock BH, Wellman HN. Combined bone scintigraphy and indium-111 leukocyte scans in neuropathic foot disease. J Nucl Med. 1988;29(10):1651–5.

    CAS  PubMed  Google Scholar 

  40. Seabold JE, Flickinger FW, Kao SC, Gleason TJ, Kahn D, Nepola JV, et al. Indium-111-leukocyte/technetium-99m-MDP bone and magnetic resonance imaging: difficulty of diagnosing osteomyelitis in patients with neuropathic osteoarthropathy. J Nucl Med. 1990;31(5):549–56.

    CAS  PubMed  Google Scholar 

  41. Palestro CJ, Torres MA. Radionuclide imaging in orthopedic infections. Semin Nucl Med. 1997;27(4):334–45.

    Article  CAS  PubMed  Google Scholar 

  42. Palestro CJ, Love C, Tronco GG, Tomas MB, Rini JN. Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics. 2006;26(3):859–70.

    Article  PubMed  Google Scholar 

  43. Palestro CJ, Mehta HH, Patel M, Freeman SJ, Harrington WN, Tomas MB, et al. Marrow versus infection in the Charcot joint: indium-111 leukocyte and technetium-99m sulfur colloid scintigraphy. J Nucl Med. 1998;39(2):346–50.

    CAS  PubMed  Google Scholar 

  44. Lazaga F, Van Asten SA, Nichols A, Bhavan K, La Fontaine J, Oz OK, et al. Hybrid imaging with 99mTc-WBC SPECT/CT to monitor the effect of therapy in diabetic foot osteomyelitis. Int Wound J. 2016;13(6):1158–60.

    Article  PubMed  Google Scholar 

  45. Vouillarmet J, Morelec I, Thivolet C. Assessing diabetic foot osteomyelitis remission with white blood cell SPECT/CT imaging. Diabet Med. 2014;31(9):1093–9.

    Article  CAS  PubMed  Google Scholar 

  46. Erdman WA, Buethe J, Bhore R, Ghayee HK, Thompson C, Maewal P, et al. Indexing severity of diabetic foot infection with 99mTc-WBC SPECT/CT hybrid imaging. Diabetes Care. 2012;35(9):1826–31.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schober O, Heindel W. PET-CT hybrid imaging. Stuttgart: Theime; 2010.

    Book  Google Scholar 

  48. Keidar Z, Militianu D, Melamed E, Bar-Shalom R, Israel O. The diabetic foot: initial experience with 18F-FDG PET/CT. J Nucl Med. 2005;46(3):444–9.

    PubMed  Google Scholar 

  49. Chacko TK, Zhuang H, Nakhoda KZ, Moussavian B, Alavi A. Applications of fluorodeoxyglucose positron emission tomography in the diagnosis of infection. Nucl Med Commun. 2003;24(6):615–24.

    Article  CAS  PubMed  Google Scholar 

  50. Meller J, Koster G, Liersch T, Siefker U, Lehmann K, Meyer I, et al. Chronic bacterial osteomyelitis: prospective comparison of (18)F-FDG imaging with a dual-head coincidence camera and (111)In-labelled autologous leucocyte scintigraphy. Eur J Nucl Med Mol Imaging. 2002;29(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  51. Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med. 2002;32(1):47–59.

    Article  PubMed  Google Scholar 

  52. Termaat MF, Raijmakers PG, Scholten HJ, Bakker FC, Patka P, Haarman HJ. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am. 2005;87(11):2464–71.

    CAS  PubMed  Google Scholar 

  53. Schmitz A, Risse HJ, Kalicke T, Grunwald F, Schmitt O. FDG-PET for diagnosis and follow-up of inflammatory processes: initial results from the orthopedic viewpoint. Z Orthop Ihre Grenzgeb. 2000;138(5):407–12. FDG-PET zur Diagnostik und Verlaufskontrolle entzundlicher Prozesse: Erste Ergebnisse aus orthopadischer Sicht

    Article  CAS  PubMed  Google Scholar 

  54. Kalicke T, Schmitz A, Risse JH, Arens S, Keller E, Hansis M, et al. Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med. 2000;27(5):524–8.

    Article  CAS  PubMed  Google Scholar 

  55. Hopfner S, Krolak C, Kessler S, Tiling R, Brinkbaumer K, Hahn K, et al. Preoperative imaging of Charcot neuroarthropathy in diabetic patients: comparison of ring PET, hybrid PET, and magnetic resonance imaging. Foot Ankle Int. 2004;25(12):890–5.

    Article  PubMed  Google Scholar 

  56. Schwegler B, Stumpe KD, Weishaupt D, Strobel K, Spinas GA, von Schulthess GK, et al. Unsuspected osteomyelitis is frequent in persistent diabetic foot ulcer and better diagnosed by MRI than by 18F-FDG PET or 99mTc-MOAB. J Intern Med. 2008;263(1):99–106.

    CAS  PubMed  Google Scholar 

  57. Treglia G, Sadeghi R, Annunziata S, Zakavi SR, Caldarella C, Muoio B, et al. Diagnostic performance of Fluorine-18-Fluorodeoxyglucose positron emission tomography for the diagnosis of osteomyelitis related to diabetic foot: a systematic review and a meta-analysis. Foot. 2013;23(4):140–8.

    Article  Google Scholar 

  58. Hara T, Higashi T, Nakamoto Y, Suga T, Saga T, Ishimori T, et al. Significance of chronic marked hyperglycemia on FDG-PET: is it really problematic for clinical oncologic imaging? Ann Nucl Med. 2009;23(7):657–69.

    Article  PubMed  Google Scholar 

  59. Yang H, Zhuang H, Rubello D, Alavi A. Mild-to-moderate hyperglycemia will not decrease the sensitivity of 18F-FDG PET imaging in the detection of pedal osteomyelitis in diabetic patients. Nucl Med Commun. 2016;37(3):259–62.

    Article  CAS  PubMed  Google Scholar 

  60. Palestro CJ. Radionuclide imaging of osteomyelitis. Semin Nucl Med. 2015;45(1):32–46.

    Article  PubMed  Google Scholar 

  61. Boutin RD, Brossmann J, Sartoris DJ, Reilly D, Resnick D. Update on imaging of orthopedic infections. Orthop Clin North Am. 1998;29(1):41–66.

    Article  CAS  PubMed  Google Scholar 

  62. Pomposelli F. Arterial imaging in patients with lower extremity ischemia and diabetes mellitus. J Vasc Surg. 2010;52(3 Suppl):81S–91S.

    Article  PubMed  Google Scholar 

  63. Smith DC, Yahiku PY, Maloney MD, Hart KL. Three new low-osmolality contrast agents: a comparative study of patient discomfort. AJNR Am J Neuroradiol. 1988;9(1):137–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. American College of Radiology. ACR Manual on Contrast Media Version 10.2. 2016. http://www.acr.org/~/media/ACR/Documents/PDF/QualitySafety/Resources/Contrast%20Manual/2016_Contrast_Media.pdf.

  65. Waybill MM, Waybill PN. Contrast media-induced nephrotoxicity: identification of patients at risk and algorithms for prevention. J Vasc Interv Radiol. 2001;12(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  66. Solomon R, Werner C, Mann D, D'Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331(21):1416–20.

    Article  CAS  PubMed  Google Scholar 

  67. Kataoka ML, Hochman MG, Rodriguez EK, Lin PJ, Kubo S, Raptopolous VD. A review of factors that affect artifact from metallic hardware on multi-row detector computed tomography. Curr Probl Diagn Radiol. 2010;39(4):125–36.

    Article  PubMed  Google Scholar 

  68. Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3):690–707.

    Article  PubMed  Google Scholar 

  69. Sartoris DJ. Cross-sectional imaging of the diabetic foot. J Foot Ankle Surg. 1994;33(6):531–45.

    CAS  PubMed  Google Scholar 

  70. Sartoris DJ, Devine S, Resnick D, Golbranson F, Fierer J, Witztum K, et al. Plantar compartmental infection in the diabetic foot. The role of computed tomography. Invest Radiol. 1985;20(8):772–84.

    Article  CAS  PubMed  Google Scholar 

  71. Gold RH, Hawkins RA, Katz RD. Bacterial osteomyelitis: findings on plain radiography, CT, MR, and scintigraphy. AJR Am J Roentgenol. 1991;157(2):365–70.

    Article  CAS  PubMed  Google Scholar 

  72. Chandnani VP, Beltran J, Morris CS, Khalil SN, Mueller CF, Burk JM, et al. Acute experimental osteomyelitis and abscesses: detection with MR imaging versus CT. Radiology. 1990;174(1):233–6.

    Article  CAS  PubMed  Google Scholar 

  73. Magid D, Fishman EK. Musculoskeletal infections in patients with AIDS: CT findings. AJR Am J Roentgenol. 1992;158(3):603–7.

    Article  CAS  PubMed  Google Scholar 

  74. van Holsbeeck MT, Introcaso JH. Musculoskeletal ultrasound. 2nd ed. St Louis, MO: Mosby; 2001.

    Google Scholar 

  75. Pineda C, Espinosa R, Pena A. Radiographic imaging in osteomyelitis: the role of plain radiography, computed tomography, ultrasonography, magnetic resonance imaging, and scintigraphy. Semin Plast Surg. 2009;23(2):80–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Riebel TW, Nasir R, Nazarenko O. The value of sonography in the detection of osteomyelitis. Pediatr Radiol. 1996;26(4):291–7.

    Article  CAS  PubMed  Google Scholar 

  77. Cardinal E, Bureau NJ, Aubin B, Chhem RK. Role of ultrasound in musculoskeletal infections. Radiol Clin North Am. 2001;39(2):191–201.

    Article  CAS  PubMed  Google Scholar 

  78. Howard CB, Einhorn M, Dagan R, Nyska M. Ultrasound in diagnosis and management of acute haematogenous osteomyelitis in children. J Bone Joint Surg. 1993;75(1):79–82.

    Article  CAS  Google Scholar 

  79. Kaiser S, Rosenborg M. Early detection of subperiosteal abscesses by ultrasonography. A means for further successful treatment in pediatric osteomyelitis. Pediatr Radiol. 1994;24(5):336–9.

    Article  CAS  PubMed  Google Scholar 

  80. Howard CB, Einhorn M, Dagan R, Nyska M. Ultrasonic features of acute osteomyelitis. J Bone Joint Surg. 1995;77(4):663–4.

    Article  CAS  Google Scholar 

  81. Chao HC, Kong MS, Lin TY, Chiu CH, Wang CR, Lee ZL. Sonographic and color Doppler sonographic diagnosis of acute osteomyelitis: report of one case. Acta Paediatr Taiwan. 1999;40(4):268–70.

    CAS  PubMed  Google Scholar 

  82. Enderle MD, Coerper S, Schweizer HP, Kopp AE, Thelen MH, Meisner C, et al. Correlation of imaging techniques to histopathology in patients with diabetic foot syndrome and clinical suspicion of chronic osteomyelitis. The role of high-resolution ultrasound. Diabetes Care. 1999;22(2):294–9.

    Article  CAS  PubMed  Google Scholar 

  83. Steiner GM, Sprigg A. The value of ultrasound in the assessment of bone. Br J Radiol. 1992;65(775):589–93.

    Article  CAS  PubMed  Google Scholar 

  84. Bray PW, Mahoney JL, Campbell JP. Sensitivity and specificity of ultrasound in the diagnosis of foreign bodies in the hand. J Hand Surg. 1995;20(4):661–6.

    Article  CAS  Google Scholar 

  85. Boyse TD, Fessell DP, Jacobson JA, Lin J, van Holsbeeck MT, Hayes CW. US of soft-tissue foreign bodies and associated complications with surgical correlation. Radiographics. 2001;21(5):1251–6.

    Article  CAS  PubMed  Google Scholar 

  86. D'Ambrogi E, Giacomozzi C, Macellari V, Uccioli L. Abnormal foot function in diabetic patients: the altered onset of windlass mechanism. Diabet Med. 2005;22(12):1713–9.

    Article  CAS  PubMed  Google Scholar 

  87. Hsu TC, Wang CL, Shau YW, Tang FT, Li KL, Chen CY. Altered heel-pad mechanical properties in patients with type 2 diabetes mellitus. Diabet Med. 2000;17(12):854–9.

    Article  CAS  PubMed  Google Scholar 

  88. Naemi R, Chatzistergos P, Sundar L, Chockalingam N, Ramachandran A. Differences in the mechanical characteristics of plantar soft tissue between ulcerated and non-ulcerated foot. J Diabetes Complications. 2016;30(7):1293–9.

    Article  PubMed  Google Scholar 

  89. Chang EY, Bae WC, Chung CB. Imaging the knee in the setting of metal hardware. Magn Reson Imaging Clin N Am. 2014;22(4):765–86.

    Article  PubMed  Google Scholar 

  90. Lobodzinski SS. Recent innovations in the development of magnetic resonance imaging conditional pacemakers and implantable cardioverter-defibrillators. Cardiol J. 2012;19(1):98–104.

    Article  PubMed  Google Scholar 

  91. Sofka CM. Technical considerations: best practices for MR imaging of the foot and ankle. Magn Reson Imaging Clin N Am. 2017;25(1):1–10.

    Article  PubMed  Google Scholar 

  92. Wertman R, Altun E, Martin DR, Mitchell DG, Leyendecker JR, O'Malley RB, et al. Risk of nephrogenic systemic fibrosis: evaluation of gadolinium chelate contrast agents at four American universities. Radiology. 2008;248(3):799–806.

    Article  PubMed  Google Scholar 

  93. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA. Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol. 2007;188(2):586–92.

    Article  PubMed  Google Scholar 

  94. Sena BF, Stern JP, Pandharipande PV, Klemm B, Bulman J, Pedrosa I, Rofsky NM. Screening patients to assess renal function before administering gadolinium chelates: assessment of the Choyke questionnaire. AJR Am J Roentgenol. 2010;195(2):424–8.

    Article  PubMed  PubMed Central  Google Scholar 

  95. US Food and Drug Administration. FDA Drug Safety Communication: New warnings for using gadolinium-based contrast agents in patients with kidney dysfunction 09-09-2010. https://www.fda.gov/Drugs/DrugSafety/ucm223966.htm. Accessed 19 Feb 2017.

  96. Kanal E, Tweedle MF. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015;275(3):630–4.

    Article  PubMed  Google Scholar 

  97. Morrison WB, Schweitzer ME, Wapner KL, Hecht PJ, Gannon FH, Behm WR. Osteomyelitis in feet of diabetics: clinical accuracy, surgical utility, and cost-effectiveness of MR imaging. Radiology. 1995;196(2):557–64.

    Article  CAS  PubMed  Google Scholar 

  98. Miller TT, Randolph DA Jr, Staron RB, Feldman F, Cushin S. Fat-suppressed MRI of musculoskeletal infection: fast T2-weighted techniques versus gadolinium-enhanced T1-weighted images. Skeletal Radiol. 1997;26(11):654–8.

    Article  CAS  PubMed  Google Scholar 

  99. Morrison WB, Schweitzer ME, Batte WG, Radack DP, Russel KM. Osteomyelitis of the foot: relative importance of primary and secondary MR imaging signs. Radiology. 1998;207(3):625–32.

    Article  CAS  PubMed  Google Scholar 

  100. Horowitz SH. Diabetic neuropathy. Clin Orthop Relat Res. 1993;296:78–85.

    Article  Google Scholar 

  101. Nigro ND, Bartynski WS, Grossman SJ, Kruljac S. Clinical impact of magnetic resonance imaging in foot osteomyelitis. J Am Podiatr Med Assoc. 1992;82(12):603–15.

    Article  CAS  PubMed  Google Scholar 

  102. Wang A, Weinstein D, Greenfield L, Chiu L, Chambers R, Stewart C, et al. MRI and diabetic foot infections. Magn Reson Imaging. 1990;8(6):805–9.

    Article  CAS  PubMed  Google Scholar 

  103. Yu JS. Diabetic foot and neuroarthropathy: magnetic resonance imaging evaluation. Top Magn Reson Imaging. 1998;9(5):295–310.

    Article  CAS  PubMed  Google Scholar 

  104. Weinstein D, Wang A, Chambers R, Stewart CA, Motz HA. Evaluation of magnetic resonance imaging in the diagnosis of osteomyelitis in diabetic foot infections. Foot Ankle. 1993;14(1):18–22.

    Article  CAS  PubMed  Google Scholar 

  105. Berquist TH. Infection. In: Berquist TH, editor. Imaging of the foot and ankle. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins; 2011. p. 436–86.

    Google Scholar 

  106. Ahmadi ME, Morrison WB, Carrino JA, Schweitzer ME, Raikin SM, Ledermann HP. Neuropathic arthropathy of the foot with and without superimposed osteomyelitis: MR imaging characteristics. Radiology. 2006;238(2):622–31.

    Article  PubMed  Google Scholar 

  107. Ledermann HP, Schweitzer ME, Morrison WB. Nonenhancing tissue on MR imaging of pedal infection: characterization of necrotic tissue and associated limitations for diagnosis of osteomyelitis and abscess. AJR Am J Roentgenol. 2002;178(1):215–22.

    Article  PubMed  Google Scholar 

  108. Bus SA, Maas M, Cavanagh PR, Michels RP, Levi M. Plantar fat-pad displacement in neuropathic diabetic patients with toe deformity: a magnetic resonance imaging study. Diabetes Care. 2004;27(10):2376–81.

    Article  PubMed  Google Scholar 

  109. Andreassen CS, Jakobsen J, Ringgaard S, Ejskjaer N, Andersen H. Accelerated atrophy of lower leg and foot muscles–a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia. 2009;52(6):1182–91.

    Article  CAS  PubMed  Google Scholar 

  110. Brash PD, Foster J, Vennart W, Anthony P, Tooke JE. Magnetic resonance imaging techniques demonstrate soft tissue damage in the diabetic foot. Diabet Med. 1999;16(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  111. Dinh T, Doupis J, Lyons TE, Kuchibhotla S, Julliard W, Gnardellis C, et al. Foot muscle energy reserves in diabetic patients without and with clinical peripheral neuropathy. Diabetes Care. 2009;32(8):1521–4.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Greenman RL, Panasyuk S, Wang X, Lyons TE, Dinh T, Longoria L, et al. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet. 2005;366(9498):1711–7.

    Article  CAS  PubMed  Google Scholar 

  113. Suzuki E, Kashiwagi A, Hidaka H, Maegawa H, Nishio Y, Kojima H, et al. 1H- and 31P-magnetic resonance spectroscopy and imaging as a new diagnostic tool to evaluate neuropathic foot ulcers in type II diabetic patients. Diabetologia. 2000;43(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  114. Weaver JB, Doyley M, Cheung Y, Kennedy F, Madsen EL, Van Houten EE, et al. Imaging the shear modulus of the heel fat pads. Clin Biomech. 2005;20(3):312–9.

    Article  Google Scholar 

  115. Pomposelli FB Jr, Marcaccio EJ, Gibbons GW, Campbell DR, Freeman DV, Burgess AM, et al. Dorsalis pedis arterial bypass: durable limb salvage for foot ischemia in patients with diabetes mellitus. J Vasc Surg. 1995;21(3):375–84.

    Article  PubMed  Google Scholar 

  116. Owen AR, Roditi GH. Peripheral arterial disease: the evolving role of non-invasive imaging. Postgrad Med J. 2011;87(1025):189–98.

    Article  CAS  PubMed  Google Scholar 

  117. Bradbury AW, Adam DJ. Diagnosis of peripheral arterial disease of the lower limb. BMJ. 2007;334(7606):1229–30.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sze D. Conventional angiography in the noninvasive era. In: Rubin GD, Rofsky NM, editors. CT and MR angiography:comprehensive vascular assessment. Philadelphia, PA: Wolters Kluwer/Lippincott, Williams & Wilkins; 2009. p. 87–127.

    Google Scholar 

  119. Lindholt JS. Radiocontrast induced nephropathy. Eur J Vasc Endovasc Surg. 2003;25(4):296–304.

    Article  CAS  PubMed  Google Scholar 

  120. Altaha MA, Jaskolka JD, Tan K, Rick M, Schmitt P, Menezes RJ, et al. Non-contrast-enhanced MR angiography in critical limb ischemia: performance of quiescent-interval single-shot (QISS) and TSE-based subtraction techniques. Eur Radiol. 2017;27(3):1218–26.

    Article  PubMed  Google Scholar 

  121. Cotroneo AR, Manfredi R, Settecasi C, Prudenzano R, Di Stasi C. Angiography and MR-angiography in the diagnosis of peripheral arterial occlusive disease in diabetic patients. Rays. 1997;22(4):579–90.

    CAS  PubMed  Google Scholar 

  122. Kreitner KF, Kalden P, Neufang A, Duber C, Krummenauer F, Kustner E, et al. Diabetes and peripheral arterial occlusive disease: prospective comparison of contrast-enhanced three-dimensional MR angiography with conventional digital subtraction angiography. AJR Am J Roentgenol. 2000;174(1):171–9.

    Article  CAS  PubMed  Google Scholar 

  123. Pandey S, Hakky M, Kwak E, Jara H, Geyer CA, Erbay SH. Application of basic principles of physics to head and neck MR angiography: troubleshooting for artifacts. Radiographics. 2013;33(3):E113–23.

    Article  PubMed  Google Scholar 

  124. Owen RS, Carpenter JP, Baum RA, Perloff LJ, Cope C. Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl J Med. 1992;326(24):1577–81.

    Article  CAS  PubMed  Google Scholar 

  125. McCauley TR, Monib A, Dickey KW, Clemett J, Meier GH, Egglin TK, et al. Peripheral vascular occlusive disease: accuracy and reliability of time-of-flight MR angiography. Radiology. 1994;192(2):351–7.

    Article  CAS  PubMed  Google Scholar 

  126. Meaney JF. Magnetic resonance angiography of the peripheral arteries: current status. Eur Radiol. 2003;13(4):836–52.

    Article  PubMed  Google Scholar 

  127. Sharafuddin MJ, Stolpen AH, Sun S, Leusner CR, Safvi AA, Hoballah JJ, et al. High-resolution multiphase contrast-enhanced three-dimensional MR angiography compared with two-dimensional time-of-flight MR angiography for the identification of pedal vessels. J Vasc Interv Radiol. 2002;13(7):695–702.

    Article  PubMed  Google Scholar 

  128. Grist TM, Mistretta CA, Strother CM, Turski PA. Time-resolved angiography: past, present, and future. J Magn Reson Imaging. 2012;36(6):1273–86.

    Article  PubMed  Google Scholar 

  129. Berquist TH. Bone and soft tissue ischemia. In: Berquist TH, editor. Imaging of the foot and ankle. Philadelphia, PA: Wolters Kluwer/Lippincott, Williams, & Williams; 2011. p. 375–435.

    Google Scholar 

  130. Herborn CU, Goyen M, Quick HH, Bosk S, Massing S, Kroeger K, et al. Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR Am J Roentgenol. 2004;182(6):1427–34.

    Article  PubMed  Google Scholar 

  131. Leiner T, Fleischmann D, Rofsky NM. Conventional angiography in the noninvasive era. In: Rubin GD, Rofsky NM, editors. CT and MR angiography: comprehensive vascular assessment. Philadelphia, PA: Wolters Kluwer/Lippincott, Williams & Wilkins; 2009. p. 921–1016.

    Google Scholar 

  132. Nelemans PJ, Leiner T, de Vet HC, van Engelshoven JM. Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. Radiology. 2000;217(1):105–14.

    Article  CAS  PubMed  Google Scholar 

  133. Dorweiler B, Neufang A, Kreitner KF, Schmiedt W, Oelert H. Magnetic resonance angiography unmasks reliable target vessels for pedal bypass grafting in patients with diabetes mellitus. J Vasc Surg. 2002;35(4):766–72.

    Article  PubMed  Google Scholar 

  134. Deutschmann HA, Schoellnast H, Portugaller HR, Preidler KW, Reittner P, Tillich M, et al. Routine use of three-dimensional contrast-enhanced moving-table MR angiography in patients with peripheral arterial occlusive disease: comparison with selective digital subtraction angiography. Cardiovasc Intervent Radiol. 2006;29(5):762–70.

    Article  PubMed  Google Scholar 

  135. Pereles FS, Collins JD, Carr JC, Francois C, Morasch MD, McCarthy RM, et al. Accuracy of stepping-table lower extremity MR angiography with dual-level bolus timing and separate calf acquisition: hybrid peripheral MR angiography. Radiology. 2006;240(1):283–90.

    Article  PubMed  Google Scholar 

  136. Owen AR, Robertson IR, Annamalai G, Roditi GH, Edwards RD, Murray LS, et al. Critical lower-limb ischemia: the diagnostic performance of dual-phase injection MR angiography (including high-resolution distal imaging) compared with digital subtraction angiography. J Vasc Interv Radiol. 2009;20(2):165–72.

    Article  PubMed  Google Scholar 

  137. Andros G. Diagnostic and therapeutic arterial interventions in the ulcerated diabetic foot. Diabetes Metab Res Rev. 2004;20(Suppl 1):S29–33.

    Article  PubMed  Google Scholar 

  138. Hodnett PA, Koktzoglou I, Davarpanah AH, Scanlon TG, Collins JD, Sheehan JJ, et al. Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography. Radiology. 2011;260(1):282–93.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Miyazaki M, Takai H, Sugiura S, Wada H, Kuwahara R, Urata J. Peripheral MR angiography: separation of arteries from veins with flow-spoiled gradient pulses in electrocardiography-triggered three-dimensional half-Fourier fast spin-echo imaging. Radiology. 2003;227(3):890–6.

    Article  PubMed  Google Scholar 

  140. Roos JE, Hellinger JC, Hallet R, Fleischmann D, Zarins CK, Rubin GD. Detection of endograft fractures with multidetector row computed tomography. J Vasc Surg. 2005;42(5):1002–6.

    Article  PubMed  Google Scholar 

  141. Kock MC, Dijkshoorn ML, Pattynama PM, Myriam Hunink MG. Multi-detector row computed tomography angiography of peripheral arterial disease. Eur Radiol. 2007;17(12):3208–22.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hartnell GG. Contrast angiography and MR angiography: still not optimum. J Vasc Interv Radiol. 1999;10(1):99–100.

    Article  CAS  PubMed  Google Scholar 

  143. Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  144. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113(11):e463–654.

    Article  PubMed  Google Scholar 

  145. Met R, Bipat S, Legemate DA, Reekers JA, Koelemay MJ. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA. 2009;301(4):415–24.

    Article  CAS  PubMed  Google Scholar 

  146. Ota H, Takase K, Igarashi K, Chiba Y, Haga K, Saito H, et al. MDCT compared with digital subtraction angiography for assessment of lower extremity arterial occlusive disease: importance of reviewing cross-sectional images. AJR Am J Roentgenol. 2004;182(1):201–9.

    Article  PubMed  Google Scholar 

  147. Willmann JK, Baumert B, Schertler T, Wildermuth S, Pfammatter T, Verdun FR, et al. Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology. 2005;236(3):1083–93.

    Article  PubMed  Google Scholar 

  148. Schernthaner R, Fleischmann D, Stadler A, Schernthaner M, Lammer J, Loewe C. Value of MDCT angiography in developing treatment strategies for critical limb ischemia. AJR Am J Roentgenol. 2009;192(5):1416–24.

    Article  PubMed  Google Scholar 

  149. Schernthaner R, Fleischmann D, Lomoschitz F, Stadler A, Lammer J, Loewe C. Effect of MDCT angiographic findings on the management of intermittent claudication. AJR Am J Roentgenol. 2007;189(5):1215–22.

    Article  PubMed  Google Scholar 

  150. Field L, Sun Z. Multislice CT angiography of the plantar arch. Biomed Imaging Interv J. 2010;6(1):e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xie D, Na J, Zhang M, Dong S, Xiao X. CT angiography of the lower extremity and coronary arteries using 256-section CT: a preliminary study. Clin Radiol. 2015;70(11):1281–8.

    Article  CAS  PubMed  Google Scholar 

  152. Ouwendijk R, Kock MC, van Dijk LC, van Sambeek MR, Stijnen T, Hunink MG. Vessel wall calcifications at multi-detector row CT angiography in patients with peripheral arterial disease: effect on clinical utility and clinical predictors. Radiology. 2006;241(2):603–8.

    Article  PubMed  Google Scholar 

  153. Meyer BC, Werncke T, Hopfenmuller W, Raatschen HJ, Wolf KJ, Albrecht T. Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur J Radiol. 2008;68(3):414–22.

    Article  CAS  PubMed  Google Scholar 

  154. Blum MB, Schmook M, Schernthaner R, Edelhauser G, Puchner S, Lammer J, et al. Quantification and detectability of in-stent stenosis with CT angiography and MR angiography in arterial stents in vitro. AJR Am J Roentgenol. 2007;189(5):1238–42.

    Article  PubMed  Google Scholar 

  155. Li XM, Li YH, Tian JM, Xiao Y, Lu JP, Jing ZP, et al. Evaluation of peripheral artery stent with 64-slice multi-detector row CT angiography: prospective comparison with digital subtraction angiography. Eur J Radiol. 2010;75(1):98–103.

    Article  PubMed  Google Scholar 

  156. Zweibel WJ, Pellerito JS. Basic concepts of Doppler frequency spectrum analysis and ultrasound blood flow imaging. In: Zweibel WJ, Pellerito JS, editors. Introduction to vascular ultrasonography. Philadelphia, PA: Elsevier Saunders; 5th edition. 2005. p. 61–89.

    Google Scholar 

  157. de Smet AA, Ermers EJ, Kitslaar PJ. Duplex velocity characteristics of aortoiliac stenoses. J Vasc Surg. 1996;23(4):628–36.

    Article  PubMed  Google Scholar 

  158. Ouwendijk R, de Vries M, Stijnen T, Pattynama PM, van Sambeek MR, Buth J, et al. Multicenter randomized controlled trial of the costs and effects of noninvasive diagnostic imaging in patients with peripheral arterial disease: the DIPAD trial. AJR Am J Roentgenol, 2008;190(5):1349–57.

    Article  PubMed  Google Scholar 

  159. Cossman DV, Ellison JE, Wagner WH, Carroll RM, Treiman RL, Foran RF, et al. Comparison of contrast arteriography to arterial mapping with color-flow duplex imaging in the lower extremities. J Vasc Surg. 1989;10(5):522–8. discussion 8-9

    Article  CAS  PubMed  Google Scholar 

  160. Dyet JF, Nicholson AA, Ettles DF. Vascular imaging and intervention in peripheral arteries in the diabetic patient. Diabetes Metab Res Rev. 2000;16(Suppl 1):S16–22.

    Article  PubMed  Google Scholar 

  161. Edwards JM, Coldwell DM, Goldman ML, Strandness DE Jr. The role of duplex scanning in the selection of patients for transluminal angioplasty. J Vasc Surg. 1991;13(1):69–74.

    Article  CAS  PubMed  Google Scholar 

  162. Collins R, Burch J, Cranny G, Aguiar-Ibanez R, Craig D, Wright K, et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ. 2007;334(7606):1257.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Larch E, Minar E, Ahmadi R, Schnurer G, Schneider B, Stumpflen A, et al. Value of color duplex sonography for evaluation of tibioperoneal arteries in patients with femoropopliteal obstruction: a prospective comparison with anterograde intraarterial digital subtraction angiography. J Vasc Surg. 1997;25(4):629–36.

    Article  CAS  PubMed  Google Scholar 

  164. Hofmann WJ, Walter J, Ugurluoglu A, Czerny M, Forstner R, Magometschnigg H. Preoperative high-frequency duplex scanning of potential pedal target vessels. J Vasc Surg. 2004;39(1):169–75.

    Article  CAS  PubMed  Google Scholar 

  165. Levy MM, Baum RA, Carpenter JP. Endovascular surgery based solely on noninvasive preprocedural imaging. J Vasc Surg. 1998;28(6):995–1003; discussion 1003-5

    Article  CAS  PubMed  Google Scholar 

  166. Ergen FB, Sanverdi SE, Oznur A. Charcot foot in diabetes and an update on imaging. Diabet Foot Ankle. 2013;4(1):21884.

    Article  Google Scholar 

  167. Beltran J. MR imaging of soft-tissue infection. Magn Reson Imaging Clin N Am. 1995;3(4):743–51.

    Article  CAS  PubMed  Google Scholar 

  168. Sequeira W. The neuropathic joint. Clin Exp Rheumatol. 1994;12(3):325–37.

    CAS  PubMed  Google Scholar 

  169. Zlatkin MB, Pathria M, Sartoris DJ, Resnick D. The diabetic foot. Radiol Clin North Am. 1987;25(6):1095–105.

    CAS  PubMed  Google Scholar 

  170. Brower AC, Allman RM. Pathogenesis of the neurotrophic joint: neurotraumatic vs. neurovascular. Radiology. 1981;139(2):349–54.

    Article  CAS  PubMed  Google Scholar 

  171. Yablon CM, Duggal N, Wu JS, Shetty SK, Dawson F, Hochman MG. A review of Charcot neuroarthropathy of the midfoot and hindfoot: what every radiologist needs to know. Curr Probl Diagn Radiol. 2010;39(5):187–99.

    Article  PubMed  Google Scholar 

  172. Leone A, Cassar-Pullicino VN, Semprini A, Tonetti L, Magarelli N, Colosimo C. Neuropathic osteoarthropathy with and without superimposed osteomyelitis in patients with a diabetic foot. Skeletal Radiol. 2016;45(6):735–54.

    Article  PubMed  Google Scholar 

  173. Ertugrul BM, Lipsky BA, Savk O. Osteomyelitis or Charcot neuro-osteoarthropathy? Differentiating these disorders in diabetic patients with a foot problem. Diabet Foot Ankle. 2013;4(1):21855.

    Article  Google Scholar 

  174. Jones EA, Manaster BJ, May DA, Disler DG. Neuropathic osteoarthropathy: diagnostic dilemmas and differential diagnosis. Radiographics. 2000;20 Spec No:S279–93.

    Article  CAS  PubMed  Google Scholar 

  175. Bevan WP, Tomlinson MP. Radiographic measures as a predictor of ulcer formation in diabetic charcot midfoot. Foot Ankle Int. 2008;29(6):568–73.

    Article  PubMed  Google Scholar 

  176. Wukich DK, Raspovic KM, Hobizal KB, Rosario B. Radiographic analysis of diabetic midfoot charcot neuroarthropathy with and without midfoot ulceration. Foot Ankle Int. 2014;35(11):1108–15.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Rogers LC, Bevilacqua NJ. The diagnosis of Charcot foot. Clin Podiatr Med Surg. 2008;25(1):43–51. vi

    Article  PubMed  Google Scholar 

  178. Rogers LC, Bevilacqua NJ. Imaging of the Charcot foot. Clin Podiatr Med Surg. 2008;25(2):263–74. vii

    Article  PubMed  Google Scholar 

  179. McCarthy E, Morrison WB, Zoga AC. MR imaging of the diabetic foot. Magn Reson Imaging Clin N Am. 2017;25(1):183–94.

    Article  PubMed  Google Scholar 

  180. Basu S, Chryssikos T, Houseni M, Scot Malay D, Shah J, Zhuang H, et al. Potential role of FDG PET in the setting of diabetic neuro-osteoarthropathy: can it differentiate uncomplicated Charcot's neuroarthropathy from osteomyelitis and soft-tissue infection? Nucl Med Commun. 2007;28(6):465–72.

    Article  PubMed  Google Scholar 

  181. Pickwell KM, van Kroonenburgh MJ, Weijers RE, van Hirtum PV, Huijberts MS, Schaper NC. F-18 FDG PET/CT scanning in Charcot disease: a brief report. Clin Nucl Med. 2011;36(1):8–10.

    Article  PubMed  Google Scholar 

  182. Israel O, Sconfienza LM, Lipsky BA. Diagnosing diabetic foot infection: the role of imaging and a proposed flow chart for assessment. Q J Nucl Med Mol Imaging. 2014;58(1):33–45.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sincere thanks to Drs. Yvonne Cheung, J. Anthony Parker, Kevin Donohoe, David Brophy, Yuri Shif, Darlene Metter, and Kevin Banks for their contributions. Heartfelt thanks, as well, to Ms. Clotell Forde for her invaluable assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary G. Hochman MD, MBA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hochman, M.G., Connolly, C. (2018). Imaging of Infection in the Diabetic Foot. In: Veves, A., Giurini, J., Guzman, R. (eds) The Diabetic Foot. Contemporary Diabetes. Humana, Cham. https://doi.org/10.1007/978-3-319-89869-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89869-8_5

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-319-89868-1

  • Online ISBN: 978-3-319-89869-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics