Imaging of Infection in the Diabetic Foot

  • Mary G. HochmanEmail author
  • Caitlin Connolly
Part of the Contemporary Diabetes book series (CDI)


Information derived from imaging studies can play an important role in the management of complicated foot problems in the diabetic patient. This chapter reviews the various modalities available for imaging of the diabetic foot—radiography, nuclear medicine studies such as bone scans, labeled leukocyte scans, bone marrow scans, and FDG PET scans, cross-sectional studies such as MRI, CT, and ultrasound, and various forms of catheter and noninvasive angiography—and highlights their relative strengths and weaknesses for the diagnosis of osteomyelitis, soft tissue infection, and neuroarthropathy. A suggested imaging algorithm for the diagnosis of osteomyelitis in the diabetic foot is presented.


Diabetic foot Osteomyelitis Pedal osteomyelitis Neuroarthropathy Bone scan Labeled leukocyte scan Bone marrow scan FDG PET scan MRI Angiography Duplex Doppler ultrasound 



Sincere thanks to Drs. Yvonne Cheung, J. Anthony Parker, Kevin Donohoe, David Brophy, Yuri Shif, Darlene Metter, and Kevin Banks for their contributions. Heartfelt thanks, as well, to Ms. Clotell Forde for her invaluable assistance in the preparation of this manuscript.


  1. 1.
    Newman LG, Waller J, Palestro CJ, Schwartz M, Klein MJ, Hermann G, et al. Unsuspected osteomyelitis in diabetic foot ulcers. Diagnosis and monitoring by leukocyte scanning with indium in 111 oxyquinoline. JAMA. 1991;266(9):1246–51.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Scher KS, Steele FJ. The septic foot in patients with diabetes. Surgery. 1988;104(4):661–6.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kaufman MW, Bowsher JE. Preventing diabetic foot ulcers. Medsurg Nurs. 1994;3(3):204–10.PubMedGoogle Scholar
  4. 4.
    Bild DE, Selby JV, Sinnock P, Browner WS, Braveman P, Showstack JA. Lower-extremity amputation in people with diabetes. Epidemiology and prevention. Diabetes Care. 1989;12(1):24–31.PubMedGoogle Scholar
  5. 5.
    Penn I. Infections in the diabetic foot. In: Sammarco, editor. The foot in diabetes. Philadelphia, PA: Lea & Febiger; 1991. p. 106–23.Google Scholar
  6. 6.
    Ecker ML, Jacobs BS. Lower extremity amputation in diabetic patients. Diabetes. 1970;19(3):189–95.PubMedGoogle Scholar
  7. 7.
    Gold RH, Tong DJ, Crim JR, Seeger LL. Imaging the diabetic foot. Skeletal Radiol. 1995;24(8):563–71.PubMedGoogle Scholar
  8. 8.
    American Diabetes A. Economic costs of diabetes in the U.S. in 2007. Diabetes Care. 2008;31(3):596–615.Google Scholar
  9. 9.
    Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137–49.PubMedGoogle Scholar
  10. 10.
    Horowitz JD, Durham JR, Nease DB, Lukens ML, Wright JG, Smead WL. Prospective evaluation of magnetic resonance imaging in the management of acute diabetic foot infections. Ann Vasc Surg. 1993;7(1):44–50.PubMedGoogle Scholar
  11. 11.
    Edmonds ME, Roberts VC, Watkins PJ. Blood flow in the diabetic neuropathic foot. Diabetologia. 1982;22(1):9–15.PubMedGoogle Scholar
  12. 12.
    Murray HJ, Young MJ, Hollis S, Boulton AJ. The association between callus formation, high pressures and neuropathy in diabetic foot ulceration. Diabet Med. 1996;13(11):979–82.PubMedGoogle Scholar
  13. 13.
    Gooding GA, Stess RM, Graf PM, Moss KM, Louie KS, Grunfeld C. Sonography of the sole of the foot. Evidence for loss of foot pad thickness in diabetes and its relationship to ulceration of the foot. Invest Radiol. 1986;21(1):45–8.PubMedGoogle Scholar
  14. 14.
    Bamberger DM, Daus GP, Gerding DN. Osteomyelitis in the feet of diabetic patients. Long-term results, prognostic factors, and the role of antimicrobial and surgical therapy. Am J Med. 1987;83(4):653–60.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Linklater J, Potter HG. Emergent musculoskeletal magnetic resonance imaging. Top Magn Reson Imaging. 1998;9(4):238–60.PubMedGoogle Scholar
  16. 16.
    Marcus CD, Ladam-Marcus VJ, Leone J, Malgrange D, Bonnet-Gausserand FM, Menanteau BP. MR imaging of osteomyelitis and neuropathic osteoarthropathy in the feet of diabetics. Radiographics. 1996;16(6):1337–48.PubMedGoogle Scholar
  17. 17.
    Moore TE, Yuh WT, Kathol MH, el-Khoury GY, Corson JD. Abnormalities of the foot in patients with diabetes mellitus: findings on MR imaging. AJR Am J Roentgenol. 1991;157(4):813–6.PubMedGoogle Scholar
  18. 18.
    Grayson ML, Gibbons GW, Balogh K, Levin E, Karchmer AW. Probing to bone in infected pedal ulcers. A clinical sign of underlying osteomyelitis in diabetic patients. JAMA. 1995;273(9):721–3.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Mutluoglu M, Uzun G, Sildiroglu O, Turhan V, Mutlu H, Yildiz S. Performance of the probe-to-bone test in a population suspected of having osteomyelitis of the foot in diabetes. J Am Podiatr Med Assoc. 2012;102(5):369–73.PubMedGoogle Scholar
  20. 20.
    Lavery LA, Armstrong DG, Peters EJ, Lipsky BA. Probe-to-bone test for diagnosing diabetic foot osteomyelitis: reliable or relic? Diabetes Care. 2007;30(2):270–4.PubMedGoogle Scholar
  21. 21.
    Lam K, van Asten SA, Nguyen T, La Fontaine J, Lavery LA. Diagnostic accuracy of probe to bone to detect osteomyelitis in the diabetic foot: a systematic review. Clin Infect Dis. 2016;63(7):944–8.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Cook TA, Rahim N, Simpson HC, Galland RB. Magnetic resonance imaging in the management of diabetic foot infection. Br J Surg. 1996;83(2):245–8.PubMedGoogle Scholar
  23. 23.
    Wrobel JS, Connolly JE. Making the diagnosis of osteomyelitis. The role of prevalence. J Am Podiatr Med Assoc. 1998;88(7):337–43.PubMedGoogle Scholar
  24. 24.
    Dinh MT, Abad CL, Safdar N. Diagnostic accuracy of the physical examination and imaging tests for osteomyelitis underlying diabetic foot ulcers: meta-analysis. Clin Infect Dis. 2008;47(4):519–27.PubMedGoogle Scholar
  25. 25.
    David Smith CGBJ, Iqbal S, Robey S, Pereira M. Medial artery calcification as an indicator of diabetic peripheral vascular disease. Foot Ankle Int. 2008;29(2):185–90.PubMedGoogle Scholar
  26. 26.
    Bonakdar-pour A, Gaines VD. The radiology of osteomyelitis. Orthop Clin North Am. 1983;14(1):21–37.PubMedGoogle Scholar
  27. 27.
    Palestro CJ, Love C. Nuclear medicine and diabetic foot infections. Semin Nucl Med. 2009;39(1):52–65.PubMedGoogle Scholar
  28. 28.
    Mark J. Kransdorf, Barbara N. Weisman, Marc Appel, Laura W. Bancroft, D. Lee Bennett, Michael A. Bruno, Ian Blair Fries, Curtis W. Hayes, Langston Holly, Jon A. Jacobson, Jonathan S. Luchs, William B. Morrison, Timothy J. Mosher, Mark D. Murphey, Christopher J. Palestro, Catherine C. Roberts, David A. Rubin, David W. Stoller, Michael J. Tuite, Robert J. Ward, James N. Wise, Adam C. Zoga. ACR Appropriateness Criteria Suspected Osteomyelitis of the Foot in Patients with Diabetes Mellitus 2012. Accessed 16 Nov 2016.Google Scholar
  29. 29.
    Filippi L, Uccioli L, Giurato L, Schillaci O. Diabetic foot infection: usefulness of SPECT/CT for 99mTc-HMPAO-labeled leukocyte imaging. J Nucl Med. 2009;50(7):1042–6.PubMedGoogle Scholar
  30. 30.
    Heiba SI, Kolker D, Mocherla B, Kapoor K, Jiang M, Son H, et al. The optimized evaluation of diabetic foot infection by dual isotope SPECT/CT imaging protocol. J Foot Ankle Surg. 2010;49(6):529–36.PubMedGoogle Scholar
  31. 31.
    Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. AJR Am J Roentgenol. 1992;158(1):9–18.PubMedGoogle Scholar
  32. 32.
    Love C, Palestro CJ. Nuclear medicine imaging of bone infections. Clin Radiol. 2016;71(7):632–46.PubMedGoogle Scholar
  33. 33.
    Palestro CJ, Love C, Miller TT. Infection and musculoskeletal conditions: imaging of musculoskeletal infections. Best Pract Res Clin Rheumatol. 2006;20(6):1197–218.PubMedGoogle Scholar
  34. 34.
    Keenan AM, Tindel NL, Alavi A. Diagnosis of pedal osteomyelitis in diabetic patients using current scintigraphic techniques. Arch Intern Med. 1989;149(10):2262–6.PubMedGoogle Scholar
  35. 35.
    Larcos G, Brown ML, Sutton RT. Diagnosis of osteomyelitis of the foot in diabetic patients: value of 111In-leukocyte scintigraphy. AJR Am J Roentgenol. 1991;157(3):527–31.PubMedGoogle Scholar
  36. 36.
    McCarthy K, Velchik MG, Alavi A, Mandell GA, Esterhai JL, Goll S. Indium-111-labeled white blood cells in the detection of osteomyelitis complicated by a pre-existing condition. J Nucl Med. 1988;29(6):1015–21.PubMedGoogle Scholar
  37. 37.
    Maurer AH, Millmond SH, Knight LC, Mesgarzadeh M, Siegel JA, Shuman CR, et al. Infection in diabetic osteoarthropathy: use of indium-labeled leukocytes for diagnosis. Radiology. 1986;161(1):221–5.PubMedGoogle Scholar
  38. 38.
    Splittgerber GF, Spiegelhoff DR, Buggy BP. Combined leukocyte and bone imaging used to evaluate diabetic osteoarthropathy and osteomyelitis. Clin Nucl Med. 1989;14(3):156–60.PubMedGoogle Scholar
  39. 39.
    Schauwecker DS, Park HM, Burt RW, Mock BH, Wellman HN. Combined bone scintigraphy and indium-111 leukocyte scans in neuropathic foot disease. J Nucl Med. 1988;29(10):1651–5.PubMedGoogle Scholar
  40. 40.
    Seabold JE, Flickinger FW, Kao SC, Gleason TJ, Kahn D, Nepola JV, et al. Indium-111-leukocyte/technetium-99m-MDP bone and magnetic resonance imaging: difficulty of diagnosing osteomyelitis in patients with neuropathic osteoarthropathy. J Nucl Med. 1990;31(5):549–56.PubMedGoogle Scholar
  41. 41.
    Palestro CJ, Torres MA. Radionuclide imaging in orthopedic infections. Semin Nucl Med. 1997;27(4):334–45.PubMedGoogle Scholar
  42. 42.
    Palestro CJ, Love C, Tronco GG, Tomas MB, Rini JN. Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics. 2006;26(3):859–70.PubMedGoogle Scholar
  43. 43.
    Palestro CJ, Mehta HH, Patel M, Freeman SJ, Harrington WN, Tomas MB, et al. Marrow versus infection in the Charcot joint: indium-111 leukocyte and technetium-99m sulfur colloid scintigraphy. J Nucl Med. 1998;39(2):346–50.PubMedGoogle Scholar
  44. 44.
    Lazaga F, Van Asten SA, Nichols A, Bhavan K, La Fontaine J, Oz OK, et al. Hybrid imaging with 99mTc-WBC SPECT/CT to monitor the effect of therapy in diabetic foot osteomyelitis. Int Wound J. 2016;13(6):1158–60.PubMedGoogle Scholar
  45. 45.
    Vouillarmet J, Morelec I, Thivolet C. Assessing diabetic foot osteomyelitis remission with white blood cell SPECT/CT imaging. Diabet Med. 2014;31(9):1093–9.PubMedGoogle Scholar
  46. 46.
    Erdman WA, Buethe J, Bhore R, Ghayee HK, Thompson C, Maewal P, et al. Indexing severity of diabetic foot infection with 99mTc-WBC SPECT/CT hybrid imaging. Diabetes Care. 2012;35(9):1826–31.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Schober O, Heindel W. PET-CT hybrid imaging. Stuttgart: Theime; 2010.Google Scholar
  48. 48.
    Keidar Z, Militianu D, Melamed E, Bar-Shalom R, Israel O. The diabetic foot: initial experience with 18F-FDG PET/CT. J Nucl Med. 2005;46(3):444–9.PubMedGoogle Scholar
  49. 49.
    Chacko TK, Zhuang H, Nakhoda KZ, Moussavian B, Alavi A. Applications of fluorodeoxyglucose positron emission tomography in the diagnosis of infection. Nucl Med Commun. 2003;24(6):615–24.PubMedGoogle Scholar
  50. 50.
    Meller J, Koster G, Liersch T, Siefker U, Lehmann K, Meyer I, et al. Chronic bacterial osteomyelitis: prospective comparison of (18)F-FDG imaging with a dual-head coincidence camera and (111)In-labelled autologous leucocyte scintigraphy. Eur J Nucl Med Mol Imaging. 2002;29(1):53–60.PubMedGoogle Scholar
  51. 51.
    Zhuang H, Alavi A. 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med. 2002;32(1):47–59.PubMedGoogle Scholar
  52. 52.
    Termaat MF, Raijmakers PG, Scholten HJ, Bakker FC, Patka P, Haarman HJ. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am. 2005;87(11):2464–71.PubMedGoogle Scholar
  53. 53.
    Schmitz A, Risse HJ, Kalicke T, Grunwald F, Schmitt O. FDG-PET for diagnosis and follow-up of inflammatory processes: initial results from the orthopedic viewpoint. Z Orthop Ihre Grenzgeb. 2000;138(5):407–12. FDG-PET zur Diagnostik und Verlaufskontrolle entzundlicher Prozesse: Erste Ergebnisse aus orthopadischer SichtPubMedGoogle Scholar
  54. 54.
    Kalicke T, Schmitz A, Risse JH, Arens S, Keller E, Hansis M, et al. Fluorine-18 fluorodeoxyglucose PET in infectious bone diseases: results of histologically confirmed cases. Eur J Nucl Med. 2000;27(5):524–8.PubMedGoogle Scholar
  55. 55.
    Hopfner S, Krolak C, Kessler S, Tiling R, Brinkbaumer K, Hahn K, et al. Preoperative imaging of Charcot neuroarthropathy in diabetic patients: comparison of ring PET, hybrid PET, and magnetic resonance imaging. Foot Ankle Int. 2004;25(12):890–5.PubMedGoogle Scholar
  56. 56.
    Schwegler B, Stumpe KD, Weishaupt D, Strobel K, Spinas GA, von Schulthess GK, et al. Unsuspected osteomyelitis is frequent in persistent diabetic foot ulcer and better diagnosed by MRI than by 18F-FDG PET or 99mTc-MOAB. J Intern Med. 2008;263(1):99–106.PubMedGoogle Scholar
  57. 57.
    Treglia G, Sadeghi R, Annunziata S, Zakavi SR, Caldarella C, Muoio B, et al. Diagnostic performance of Fluorine-18-Fluorodeoxyglucose positron emission tomography for the diagnosis of osteomyelitis related to diabetic foot: a systematic review and a meta-analysis. Foot. 2013;23(4):140–8.Google Scholar
  58. 58.
    Hara T, Higashi T, Nakamoto Y, Suga T, Saga T, Ishimori T, et al. Significance of chronic marked hyperglycemia on FDG-PET: is it really problematic for clinical oncologic imaging? Ann Nucl Med. 2009;23(7):657–69.PubMedGoogle Scholar
  59. 59.
    Yang H, Zhuang H, Rubello D, Alavi A. Mild-to-moderate hyperglycemia will not decrease the sensitivity of 18F-FDG PET imaging in the detection of pedal osteomyelitis in diabetic patients. Nucl Med Commun. 2016;37(3):259–62.PubMedGoogle Scholar
  60. 60.
    Palestro CJ. Radionuclide imaging of osteomyelitis. Semin Nucl Med. 2015;45(1):32–46.PubMedGoogle Scholar
  61. 61.
    Boutin RD, Brossmann J, Sartoris DJ, Reilly D, Resnick D. Update on imaging of orthopedic infections. Orthop Clin North Am. 1998;29(1):41–66.PubMedGoogle Scholar
  62. 62.
    Pomposelli F. Arterial imaging in patients with lower extremity ischemia and diabetes mellitus. J Vasc Surg. 2010;52(3 Suppl):81S–91S.Google Scholar
  63. 63.
    Smith DC, Yahiku PY, Maloney MD, Hart KL. Three new low-osmolality contrast agents: a comparative study of patient discomfort. AJNR Am J Neuroradiol. 1988;9(1):137–9.PubMedGoogle Scholar
  64. 64.
    American College of Radiology. ACR Manual on Contrast Media Version 10.2. 2016.
  65. 65.
    Waybill MM, Waybill PN. Contrast media-induced nephrotoxicity: identification of patients at risk and algorithms for prevention. J Vasc Interv Radiol. 2001;12(1):3–9.PubMedGoogle Scholar
  66. 66.
    Solomon R, Werner C, Mann D, D'Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331(21):1416–20.PubMedGoogle Scholar
  67. 67.
    Kataoka ML, Hochman MG, Rodriguez EK, Lin PJ, Kubo S, Raptopolous VD. A review of factors that affect artifact from metallic hardware on multi-row detector computed tomography. Curr Probl Diagn Radiol. 2010;39(4):125–36.PubMedGoogle Scholar
  68. 68.
    Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3):690–707.PubMedGoogle Scholar
  69. 69.
    Sartoris DJ. Cross-sectional imaging of the diabetic foot. J Foot Ankle Surg. 1994;33(6):531–45.PubMedGoogle Scholar
  70. 70.
    Sartoris DJ, Devine S, Resnick D, Golbranson F, Fierer J, Witztum K, et al. Plantar compartmental infection in the diabetic foot. The role of computed tomography. Invest Radiol. 1985;20(8):772–84.PubMedGoogle Scholar
  71. 71.
    Gold RH, Hawkins RA, Katz RD. Bacterial osteomyelitis: findings on plain radiography, CT, MR, and scintigraphy. AJR Am J Roentgenol. 1991;157(2):365–70.PubMedGoogle Scholar
  72. 72.
    Chandnani VP, Beltran J, Morris CS, Khalil SN, Mueller CF, Burk JM, et al. Acute experimental osteomyelitis and abscesses: detection with MR imaging versus CT. Radiology. 1990;174(1):233–6.PubMedGoogle Scholar
  73. 73.
    Magid D, Fishman EK. Musculoskeletal infections in patients with AIDS: CT findings. AJR Am J Roentgenol. 1992;158(3):603–7.PubMedGoogle Scholar
  74. 74.
    van Holsbeeck MT, Introcaso JH. Musculoskeletal ultrasound. 2nd ed. St Louis, MO: Mosby; 2001.Google Scholar
  75. 75.
    Pineda C, Espinosa R, Pena A. Radiographic imaging in osteomyelitis: the role of plain radiography, computed tomography, ultrasonography, magnetic resonance imaging, and scintigraphy. Semin Plast Surg. 2009;23(2):80–9.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Riebel TW, Nasir R, Nazarenko O. The value of sonography in the detection of osteomyelitis. Pediatr Radiol. 1996;26(4):291–7.PubMedGoogle Scholar
  77. 77.
    Cardinal E, Bureau NJ, Aubin B, Chhem RK. Role of ultrasound in musculoskeletal infections. Radiol Clin North Am. 2001;39(2):191–201.PubMedGoogle Scholar
  78. 78.
    Howard CB, Einhorn M, Dagan R, Nyska M. Ultrasound in diagnosis and management of acute haematogenous osteomyelitis in children. J Bone Joint Surg. 1993;75(1):79–82.Google Scholar
  79. 79.
    Kaiser S, Rosenborg M. Early detection of subperiosteal abscesses by ultrasonography. A means for further successful treatment in pediatric osteomyelitis. Pediatr Radiol. 1994;24(5):336–9.PubMedGoogle Scholar
  80. 80.
    Howard CB, Einhorn M, Dagan R, Nyska M. Ultrasonic features of acute osteomyelitis. J Bone Joint Surg. 1995;77(4):663–4.Google Scholar
  81. 81.
    Chao HC, Kong MS, Lin TY, Chiu CH, Wang CR, Lee ZL. Sonographic and color Doppler sonographic diagnosis of acute osteomyelitis: report of one case. Acta Paediatr Taiwan. 1999;40(4):268–70.PubMedGoogle Scholar
  82. 82.
    Enderle MD, Coerper S, Schweizer HP, Kopp AE, Thelen MH, Meisner C, et al. Correlation of imaging techniques to histopathology in patients with diabetic foot syndrome and clinical suspicion of chronic osteomyelitis. The role of high-resolution ultrasound. Diabetes Care. 1999;22(2):294–9.PubMedGoogle Scholar
  83. 83.
    Steiner GM, Sprigg A. The value of ultrasound in the assessment of bone. Br J Radiol. 1992;65(775):589–93.PubMedGoogle Scholar
  84. 84.
    Bray PW, Mahoney JL, Campbell JP. Sensitivity and specificity of ultrasound in the diagnosis of foreign bodies in the hand. J Hand Surg. 1995;20(4):661–6.Google Scholar
  85. 85.
    Boyse TD, Fessell DP, Jacobson JA, Lin J, van Holsbeeck MT, Hayes CW. US of soft-tissue foreign bodies and associated complications with surgical correlation. Radiographics. 2001;21(5):1251–6.PubMedGoogle Scholar
  86. 86.
    D'Ambrogi E, Giacomozzi C, Macellari V, Uccioli L. Abnormal foot function in diabetic patients: the altered onset of windlass mechanism. Diabet Med. 2005;22(12):1713–9.PubMedGoogle Scholar
  87. 87.
    Hsu TC, Wang CL, Shau YW, Tang FT, Li KL, Chen CY. Altered heel-pad mechanical properties in patients with type 2 diabetes mellitus. Diabet Med. 2000;17(12):854–9.PubMedGoogle Scholar
  88. 88.
    Naemi R, Chatzistergos P, Sundar L, Chockalingam N, Ramachandran A. Differences in the mechanical characteristics of plantar soft tissue between ulcerated and non-ulcerated foot. J Diabetes Complications. 2016;30(7):1293–9.PubMedGoogle Scholar
  89. 89.
    Chang EY, Bae WC, Chung CB. Imaging the knee in the setting of metal hardware. Magn Reson Imaging Clin N Am. 2014;22(4):765–86.PubMedGoogle Scholar
  90. 90.
    Lobodzinski SS. Recent innovations in the development of magnetic resonance imaging conditional pacemakers and implantable cardioverter-defibrillators. Cardiol J. 2012;19(1):98–104.PubMedGoogle Scholar
  91. 91.
    Sofka CM. Technical considerations: best practices for MR imaging of the foot and ankle. Magn Reson Imaging Clin N Am. 2017;25(1):1–10.PubMedGoogle Scholar
  92. 92.
    Wertman R, Altun E, Martin DR, Mitchell DG, Leyendecker JR, O'Malley RB, et al. Risk of nephrogenic systemic fibrosis: evaluation of gadolinium chelate contrast agents at four American universities. Radiology. 2008;248(3):799–806.PubMedGoogle Scholar
  93. 93.
    Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA. Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol. 2007;188(2):586–92.PubMedGoogle Scholar
  94. 94.
    Sena BF, Stern JP, Pandharipande PV, Klemm B, Bulman J, Pedrosa I, Rofsky NM. Screening patients to assess renal function before administering gadolinium chelates: assessment of the Choyke questionnaire. AJR Am J Roentgenol. 2010;195(2):424–8.PubMedPubMedCentralGoogle Scholar
  95. 95.
    US Food and Drug Administration. FDA Drug Safety Communication: New warnings for using gadolinium-based contrast agents in patients with kidney dysfunction 09-09-2010. Accessed 19 Feb 2017.
  96. 96.
    Kanal E, Tweedle MF. Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology. 2015;275(3):630–4.PubMedGoogle Scholar
  97. 97.
    Morrison WB, Schweitzer ME, Wapner KL, Hecht PJ, Gannon FH, Behm WR. Osteomyelitis in feet of diabetics: clinical accuracy, surgical utility, and cost-effectiveness of MR imaging. Radiology. 1995;196(2):557–64.PubMedGoogle Scholar
  98. 98.
    Miller TT, Randolph DA Jr, Staron RB, Feldman F, Cushin S. Fat-suppressed MRI of musculoskeletal infection: fast T2-weighted techniques versus gadolinium-enhanced T1-weighted images. Skeletal Radiol. 1997;26(11):654–8.PubMedGoogle Scholar
  99. 99.
    Morrison WB, Schweitzer ME, Batte WG, Radack DP, Russel KM. Osteomyelitis of the foot: relative importance of primary and secondary MR imaging signs. Radiology. 1998;207(3):625–32.PubMedGoogle Scholar
  100. 100.
    Horowitz SH. Diabetic neuropathy. Clin Orthop Relat Res. 1993;296:78–85.Google Scholar
  101. 101.
    Nigro ND, Bartynski WS, Grossman SJ, Kruljac S. Clinical impact of magnetic resonance imaging in foot osteomyelitis. J Am Podiatr Med Assoc. 1992;82(12):603–15.PubMedGoogle Scholar
  102. 102.
    Wang A, Weinstein D, Greenfield L, Chiu L, Chambers R, Stewart C, et al. MRI and diabetic foot infections. Magn Reson Imaging. 1990;8(6):805–9.PubMedGoogle Scholar
  103. 103.
    Yu JS. Diabetic foot and neuroarthropathy: magnetic resonance imaging evaluation. Top Magn Reson Imaging. 1998;9(5):295–310.PubMedGoogle Scholar
  104. 104.
    Weinstein D, Wang A, Chambers R, Stewart CA, Motz HA. Evaluation of magnetic resonance imaging in the diagnosis of osteomyelitis in diabetic foot infections. Foot Ankle. 1993;14(1):18–22.PubMedGoogle Scholar
  105. 105.
    Berquist TH. Infection. In: Berquist TH, editor. Imaging of the foot and ankle. Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins; 2011. p. 436–86.Google Scholar
  106. 106.
    Ahmadi ME, Morrison WB, Carrino JA, Schweitzer ME, Raikin SM, Ledermann HP. Neuropathic arthropathy of the foot with and without superimposed osteomyelitis: MR imaging characteristics. Radiology. 2006;238(2):622–31.PubMedGoogle Scholar
  107. 107.
    Ledermann HP, Schweitzer ME, Morrison WB. Nonenhancing tissue on MR imaging of pedal infection: characterization of necrotic tissue and associated limitations for diagnosis of osteomyelitis and abscess. AJR Am J Roentgenol. 2002;178(1):215–22.PubMedGoogle Scholar
  108. 108.
    Bus SA, Maas M, Cavanagh PR, Michels RP, Levi M. Plantar fat-pad displacement in neuropathic diabetic patients with toe deformity: a magnetic resonance imaging study. Diabetes Care. 2004;27(10):2376–81.PubMedGoogle Scholar
  109. 109.
    Andreassen CS, Jakobsen J, Ringgaard S, Ejskjaer N, Andersen H. Accelerated atrophy of lower leg and foot muscles–a follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia. 2009;52(6):1182–91.PubMedGoogle Scholar
  110. 110.
    Brash PD, Foster J, Vennart W, Anthony P, Tooke JE. Magnetic resonance imaging techniques demonstrate soft tissue damage in the diabetic foot. Diabet Med. 1999;16(1):55–61.PubMedGoogle Scholar
  111. 111.
    Dinh T, Doupis J, Lyons TE, Kuchibhotla S, Julliard W, Gnardellis C, et al. Foot muscle energy reserves in diabetic patients without and with clinical peripheral neuropathy. Diabetes Care. 2009;32(8):1521–4.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Greenman RL, Panasyuk S, Wang X, Lyons TE, Dinh T, Longoria L, et al. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet. 2005;366(9498):1711–7.PubMedGoogle Scholar
  113. 113.
    Suzuki E, Kashiwagi A, Hidaka H, Maegawa H, Nishio Y, Kojima H, et al. 1H- and 31P-magnetic resonance spectroscopy and imaging as a new diagnostic tool to evaluate neuropathic foot ulcers in type II diabetic patients. Diabetologia. 2000;43(2):165–72.PubMedGoogle Scholar
  114. 114.
    Weaver JB, Doyley M, Cheung Y, Kennedy F, Madsen EL, Van Houten EE, et al. Imaging the shear modulus of the heel fat pads. Clin Biomech. 2005;20(3):312–9.Google Scholar
  115. 115.
    Pomposelli FB Jr, Marcaccio EJ, Gibbons GW, Campbell DR, Freeman DV, Burgess AM, et al. Dorsalis pedis arterial bypass: durable limb salvage for foot ischemia in patients with diabetes mellitus. J Vasc Surg. 1995;21(3):375–84.PubMedGoogle Scholar
  116. 116.
    Owen AR, Roditi GH. Peripheral arterial disease: the evolving role of non-invasive imaging. Postgrad Med J. 2011;87(1025):189–98.PubMedGoogle Scholar
  117. 117.
    Bradbury AW, Adam DJ. Diagnosis of peripheral arterial disease of the lower limb. BMJ. 2007;334(7606):1229–30.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Sze D. Conventional angiography in the noninvasive era. In: Rubin GD, Rofsky NM, editors. CT and MR angiography:comprehensive vascular assessment. Philadelphia, PA: Wolters Kluwer/Lippincott, Williams & Wilkins; 2009. p. 87–127.Google Scholar
  119. 119.
    Lindholt JS. Radiocontrast induced nephropathy. Eur J Vasc Endovasc Surg. 2003;25(4):296–304.PubMedGoogle Scholar
  120. 120.
    Altaha MA, Jaskolka JD, Tan K, Rick M, Schmitt P, Menezes RJ, et al. Non-contrast-enhanced MR angiography in critical limb ischemia: performance of quiescent-interval single-shot (QISS) and TSE-based subtraction techniques. Eur Radiol. 2017;27(3):1218–26.PubMedGoogle Scholar
  121. 121.
    Cotroneo AR, Manfredi R, Settecasi C, Prudenzano R, Di Stasi C. Angiography and MR-angiography in the diagnosis of peripheral arterial occlusive disease in diabetic patients. Rays. 1997;22(4):579–90.PubMedGoogle Scholar
  122. 122.
    Kreitner KF, Kalden P, Neufang A, Duber C, Krummenauer F, Kustner E, et al. Diabetes and peripheral arterial occlusive disease: prospective comparison of contrast-enhanced three-dimensional MR angiography with conventional digital subtraction angiography. AJR Am J Roentgenol. 2000;174(1):171–9.PubMedGoogle Scholar
  123. 123.
    Pandey S, Hakky M, Kwak E, Jara H, Geyer CA, Erbay SH. Application of basic principles of physics to head and neck MR angiography: troubleshooting for artifacts. Radiographics. 2013;33(3):E113–23.PubMedGoogle Scholar
  124. 124.
    Owen RS, Carpenter JP, Baum RA, Perloff LJ, Cope C. Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl J Med. 1992;326(24):1577–81.PubMedGoogle Scholar
  125. 125.
    McCauley TR, Monib A, Dickey KW, Clemett J, Meier GH, Egglin TK, et al. Peripheral vascular occlusive disease: accuracy and reliability of time-of-flight MR angiography. Radiology. 1994;192(2):351–7.PubMedGoogle Scholar
  126. 126.
    Meaney JF. Magnetic resonance angiography of the peripheral arteries: current status. Eur Radiol. 2003;13(4):836–52.PubMedGoogle Scholar
  127. 127.
    Sharafuddin MJ, Stolpen AH, Sun S, Leusner CR, Safvi AA, Hoballah JJ, et al. High-resolution multiphase contrast-enhanced three-dimensional MR angiography compared with two-dimensional time-of-flight MR angiography for the identification of pedal vessels. J Vasc Interv Radiol. 2002;13(7):695–702.PubMedGoogle Scholar
  128. 128.
    Grist TM, Mistretta CA, Strother CM, Turski PA. Time-resolved angiography: past, present, and future. J Magn Reson Imaging. 2012;36(6):1273–86.PubMedGoogle Scholar
  129. 129.
    Berquist TH. Bone and soft tissue ischemia. In: Berquist TH, editor. Imaging of the foot and ankle. Philadelphia, PA: Wolters Kluwer/Lippincott, Williams, & Williams; 2011. p. 375–435.Google Scholar
  130. 130.
    Herborn CU, Goyen M, Quick HH, Bosk S, Massing S, Kroeger K, et al. Whole-body 3D MR angiography of patients with peripheral arterial occlusive disease. AJR Am J Roentgenol. 2004;182(6):1427–34.PubMedGoogle Scholar
  131. 131.
    Leiner T, Fleischmann D, Rofsky NM. Conventional angiography in the noninvasive era. In: Rubin GD, Rofsky NM, editors. CT and MR angiography: comprehensive vascular assessment. Philadelphia, PA: Wolters Kluwer/Lippincott, Williams & Wilkins; 2009. p. 921–1016.Google Scholar
  132. 132.
    Nelemans PJ, Leiner T, de Vet HC, van Engelshoven JM. Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. Radiology. 2000;217(1):105–14.PubMedGoogle Scholar
  133. 133.
    Dorweiler B, Neufang A, Kreitner KF, Schmiedt W, Oelert H. Magnetic resonance angiography unmasks reliable target vessels for pedal bypass grafting in patients with diabetes mellitus. J Vasc Surg. 2002;35(4):766–72.PubMedGoogle Scholar
  134. 134.
    Deutschmann HA, Schoellnast H, Portugaller HR, Preidler KW, Reittner P, Tillich M, et al. Routine use of three-dimensional contrast-enhanced moving-table MR angiography in patients with peripheral arterial occlusive disease: comparison with selective digital subtraction angiography. Cardiovasc Intervent Radiol. 2006;29(5):762–70.PubMedGoogle Scholar
  135. 135.
    Pereles FS, Collins JD, Carr JC, Francois C, Morasch MD, McCarthy RM, et al. Accuracy of stepping-table lower extremity MR angiography with dual-level bolus timing and separate calf acquisition: hybrid peripheral MR angiography. Radiology. 2006;240(1):283–90.PubMedGoogle Scholar
  136. 136.
    Owen AR, Robertson IR, Annamalai G, Roditi GH, Edwards RD, Murray LS, et al. Critical lower-limb ischemia: the diagnostic performance of dual-phase injection MR angiography (including high-resolution distal imaging) compared with digital subtraction angiography. J Vasc Interv Radiol. 2009;20(2):165–72.PubMedGoogle Scholar
  137. 137.
    Andros G. Diagnostic and therapeutic arterial interventions in the ulcerated diabetic foot. Diabetes Metab Res Rev. 2004;20(Suppl 1):S29–33.PubMedGoogle Scholar
  138. 138.
    Hodnett PA, Koktzoglou I, Davarpanah AH, Scanlon TG, Collins JD, Sheehan JJ, et al. Evaluation of peripheral arterial disease with nonenhanced quiescent-interval single-shot MR angiography. Radiology. 2011;260(1):282–93.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Miyazaki M, Takai H, Sugiura S, Wada H, Kuwahara R, Urata J. Peripheral MR angiography: separation of arteries from veins with flow-spoiled gradient pulses in electrocardiography-triggered three-dimensional half-Fourier fast spin-echo imaging. Radiology. 2003;227(3):890–6.PubMedGoogle Scholar
  140. 140.
    Roos JE, Hellinger JC, Hallet R, Fleischmann D, Zarins CK, Rubin GD. Detection of endograft fractures with multidetector row computed tomography. J Vasc Surg. 2005;42(5):1002–6.PubMedGoogle Scholar
  141. 141.
    Kock MC, Dijkshoorn ML, Pattynama PM, Myriam Hunink MG. Multi-detector row computed tomography angiography of peripheral arterial disease. Eur Radiol. 2007;17(12):3208–22.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Hartnell GG. Contrast angiography and MR angiography: still not optimum. J Vasc Interv Radiol. 1999;10(1):99–100.PubMedGoogle Scholar
  143. 143.
    Brenner DJ, Hall EJ. Computed tomography–an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113(11):e463–654.PubMedGoogle Scholar
  145. 145.
    Met R, Bipat S, Legemate DA, Reekers JA, Koelemay MJ. Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA. 2009;301(4):415–24.PubMedGoogle Scholar
  146. 146.
    Ota H, Takase K, Igarashi K, Chiba Y, Haga K, Saito H, et al. MDCT compared with digital subtraction angiography for assessment of lower extremity arterial occlusive disease: importance of reviewing cross-sectional images. AJR Am J Roentgenol. 2004;182(1):201–9.PubMedGoogle Scholar
  147. 147.
    Willmann JK, Baumert B, Schertler T, Wildermuth S, Pfammatter T, Verdun FR, et al. Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology. 2005;236(3):1083–93.PubMedGoogle Scholar
  148. 148.
    Schernthaner R, Fleischmann D, Stadler A, Schernthaner M, Lammer J, Loewe C. Value of MDCT angiography in developing treatment strategies for critical limb ischemia. AJR Am J Roentgenol. 2009;192(5):1416–24.PubMedGoogle Scholar
  149. 149.
    Schernthaner R, Fleischmann D, Lomoschitz F, Stadler A, Lammer J, Loewe C. Effect of MDCT angiographic findings on the management of intermittent claudication. AJR Am J Roentgenol. 2007;189(5):1215–22.PubMedGoogle Scholar
  150. 150.
    Field L, Sun Z. Multislice CT angiography of the plantar arch. Biomed Imaging Interv J. 2010;6(1):e10.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Xie D, Na J, Zhang M, Dong S, Xiao X. CT angiography of the lower extremity and coronary arteries using 256-section CT: a preliminary study. Clin Radiol. 2015;70(11):1281–8.PubMedGoogle Scholar
  152. 152.
    Ouwendijk R, Kock MC, van Dijk LC, van Sambeek MR, Stijnen T, Hunink MG. Vessel wall calcifications at multi-detector row CT angiography in patients with peripheral arterial disease: effect on clinical utility and clinical predictors. Radiology. 2006;241(2):603–8.PubMedGoogle Scholar
  153. 153.
    Meyer BC, Werncke T, Hopfenmuller W, Raatschen HJ, Wolf KJ, Albrecht T. Dual energy CT of peripheral arteries: effect of automatic bone and plaque removal on image quality and grading of stenoses. Eur J Radiol. 2008;68(3):414–22.PubMedGoogle Scholar
  154. 154.
    Blum MB, Schmook M, Schernthaner R, Edelhauser G, Puchner S, Lammer J, et al. Quantification and detectability of in-stent stenosis with CT angiography and MR angiography in arterial stents in vitro. AJR Am J Roentgenol. 2007;189(5):1238–42.PubMedGoogle Scholar
  155. 155.
    Li XM, Li YH, Tian JM, Xiao Y, Lu JP, Jing ZP, et al. Evaluation of peripheral artery stent with 64-slice multi-detector row CT angiography: prospective comparison with digital subtraction angiography. Eur J Radiol. 2010;75(1):98–103.PubMedGoogle Scholar
  156. 156.
    Zweibel WJ, Pellerito JS. Basic concepts of Doppler frequency spectrum analysis and ultrasound blood flow imaging. In: Zweibel WJ, Pellerito JS, editors. Introduction to vascular ultrasonography. Philadelphia, PA: Elsevier Saunders; 5th edition. 2005. p. 61–89.Google Scholar
  157. 157.
    de Smet AA, Ermers EJ, Kitslaar PJ. Duplex velocity characteristics of aortoiliac stenoses. J Vasc Surg. 1996;23(4):628–36.PubMedGoogle Scholar
  158. 158.
    Ouwendijk R, de Vries M, Stijnen T, Pattynama PM, van Sambeek MR, Buth J, et al. Multicenter randomized controlled trial of the costs and effects of noninvasive diagnostic imaging in patients with peripheral arterial disease: the DIPAD trial. AJR Am J Roentgenol, 2008;190(5):1349–57.PubMedGoogle Scholar
  159. 159.
    Cossman DV, Ellison JE, Wagner WH, Carroll RM, Treiman RL, Foran RF, et al. Comparison of contrast arteriography to arterial mapping with color-flow duplex imaging in the lower extremities. J Vasc Surg. 1989;10(5):522–8. discussion 8-9PubMedGoogle Scholar
  160. 160.
    Dyet JF, Nicholson AA, Ettles DF. Vascular imaging and intervention in peripheral arteries in the diabetic patient. Diabetes Metab Res Rev. 2000;16(Suppl 1):S16–22.PubMedGoogle Scholar
  161. 161.
    Edwards JM, Coldwell DM, Goldman ML, Strandness DE Jr. The role of duplex scanning in the selection of patients for transluminal angioplasty. J Vasc Surg. 1991;13(1):69–74.PubMedGoogle Scholar
  162. 162.
    Collins R, Burch J, Cranny G, Aguiar-Ibanez R, Craig D, Wright K, et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ. 2007;334(7606):1257.PubMedPubMedCentralGoogle Scholar
  163. 163.
    Larch E, Minar E, Ahmadi R, Schnurer G, Schneider B, Stumpflen A, et al. Value of color duplex sonography for evaluation of tibioperoneal arteries in patients with femoropopliteal obstruction: a prospective comparison with anterograde intraarterial digital subtraction angiography. J Vasc Surg. 1997;25(4):629–36.PubMedGoogle Scholar
  164. 164.
    Hofmann WJ, Walter J, Ugurluoglu A, Czerny M, Forstner R, Magometschnigg H. Preoperative high-frequency duplex scanning of potential pedal target vessels. J Vasc Surg. 2004;39(1):169–75.PubMedGoogle Scholar
  165. 165.
    Levy MM, Baum RA, Carpenter JP. Endovascular surgery based solely on noninvasive preprocedural imaging. J Vasc Surg. 1998;28(6):995–1003; discussion 1003-5PubMedGoogle Scholar
  166. 166.
    Ergen FB, Sanverdi SE, Oznur A. Charcot foot in diabetes and an update on imaging. Diabet Foot Ankle. 2013;4(1):21884.Google Scholar
  167. 167.
    Beltran J. MR imaging of soft-tissue infection. Magn Reson Imaging Clin N Am. 1995;3(4):743–51.PubMedGoogle Scholar
  168. 168.
    Sequeira W. The neuropathic joint. Clin Exp Rheumatol. 1994;12(3):325–37.PubMedGoogle Scholar
  169. 169.
    Zlatkin MB, Pathria M, Sartoris DJ, Resnick D. The diabetic foot. Radiol Clin North Am. 1987;25(6):1095–105.PubMedGoogle Scholar
  170. 170.
    Brower AC, Allman RM. Pathogenesis of the neurotrophic joint: neurotraumatic vs. neurovascular. Radiology. 1981;139(2):349–54.PubMedGoogle Scholar
  171. 171.
    Yablon CM, Duggal N, Wu JS, Shetty SK, Dawson F, Hochman MG. A review of Charcot neuroarthropathy of the midfoot and hindfoot: what every radiologist needs to know. Curr Probl Diagn Radiol. 2010;39(5):187–99.PubMedGoogle Scholar
  172. 172.
    Leone A, Cassar-Pullicino VN, Semprini A, Tonetti L, Magarelli N, Colosimo C. Neuropathic osteoarthropathy with and without superimposed osteomyelitis in patients with a diabetic foot. Skeletal Radiol. 2016;45(6):735–54.PubMedGoogle Scholar
  173. 173.
    Ertugrul BM, Lipsky BA, Savk O. Osteomyelitis or Charcot neuro-osteoarthropathy? Differentiating these disorders in diabetic patients with a foot problem. Diabet Foot Ankle. 2013;4(1):21855.Google Scholar
  174. 174.
    Jones EA, Manaster BJ, May DA, Disler DG. Neuropathic osteoarthropathy: diagnostic dilemmas and differential diagnosis. Radiographics. 2000;20 Spec No:S279–93.PubMedGoogle Scholar
  175. 175.
    Bevan WP, Tomlinson MP. Radiographic measures as a predictor of ulcer formation in diabetic charcot midfoot. Foot Ankle Int. 2008;29(6):568–73.PubMedGoogle Scholar
  176. 176.
    Wukich DK, Raspovic KM, Hobizal KB, Rosario B. Radiographic analysis of diabetic midfoot charcot neuroarthropathy with and without midfoot ulceration. Foot Ankle Int. 2014;35(11):1108–15.PubMedPubMedCentralGoogle Scholar
  177. 177.
    Rogers LC, Bevilacqua NJ. The diagnosis of Charcot foot. Clin Podiatr Med Surg. 2008;25(1):43–51. viPubMedGoogle Scholar
  178. 178.
    Rogers LC, Bevilacqua NJ. Imaging of the Charcot foot. Clin Podiatr Med Surg. 2008;25(2):263–74. viiPubMedGoogle Scholar
  179. 179.
    McCarthy E, Morrison WB, Zoga AC. MR imaging of the diabetic foot. Magn Reson Imaging Clin N Am. 2017;25(1):183–94.PubMedGoogle Scholar
  180. 180.
    Basu S, Chryssikos T, Houseni M, Scot Malay D, Shah J, Zhuang H, et al. Potential role of FDG PET in the setting of diabetic neuro-osteoarthropathy: can it differentiate uncomplicated Charcot's neuroarthropathy from osteomyelitis and soft-tissue infection? Nucl Med Commun. 2007;28(6):465–72.PubMedGoogle Scholar
  181. 181.
    Pickwell KM, van Kroonenburgh MJ, Weijers RE, van Hirtum PV, Huijberts MS, Schaper NC. F-18 FDG PET/CT scanning in Charcot disease: a brief report. Clin Nucl Med. 2011;36(1):8–10.PubMedGoogle Scholar
  182. 182.
    Israel O, Sconfienza LM, Lipsky BA. Diagnosing diabetic foot infection: the role of imaging and a proposed flow chart for assessment. Q J Nucl Med Mol Imaging. 2014;58(1):33–45.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Radiology, Musculoskeletal Imaging and InterventionHarvard Medical School, Beth Israel Deaconess Medical CenterBostonUSA
  2. 2.Department of RadiologyMt. Auburn HospitalCambridgeUSA
  3. 3.Harvard Medical SchoolBostonUSA

Personalised recommendations