Advertisement

MicroRNAs: Novel Therapeutic Targets for Diabetic Wound Healing

  • Seema Dangwal
  • Ariana Foinquinos
  • Thomas Thum
Chapter
Part of the Contemporary Diabetes book series (CDI)

Abstract

Diabetic foot ulcer (DFU) represents a major clinical challenge among diabetic complications and combines multiple physiological factors involved in the inhibition of wound healing. Healing of skin wounds is a complex and dynamic process in response to cutaneous injury, which involves a cascade of molecular events orchestrated with temporal and spatial gene regulation in different cell types. Abnormal patterns of tissue repair-related gene expression and resultant cellular malfunctions are key components of impaired healing in diabetic patients. Thus, to understand the pathophysiology of delayed healing in DFU, it is crucial to identify the functional regulators in individual cell types. Recent studies have demonstrated various genetic and epigenetic regulators of the cellular transcriptome and among them highly conserved, tiny noncoding RNAs, especially microRNAs, constitute an important class of master regulators to regulate diverse cellular functions essential for skin wound healing. Here, we will discuss the recent advancements on miRNA regulation of tissue repair processes and their potential as novel therapeutic targets to accelerate healing in diabetic patients.

Keywords

miRNA DFU Wound healing LNA AntimiR Angiogenesis Dermal microvascular endothelial cells Keratinocytes Dermal fibroblasts miRNA therapy 

References

  1. 1.
    Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet. 2005;366(9498):1719–24.CrossRefPubMedGoogle Scholar
  2. 2.
    Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117(5):1219–22.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jeffcoate WJ, Harding KG. Diabetic foot ulcers. Lancet. 2003;361(9368):1545–51.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang JM, Tao J, Chen DD, Cai JJ, Irani K, Wang Q, et al. MicroRNA miR-27b rescues bone marrow-derived angiogenic cell function and accelerates wound healing in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2014;34(1):99–109.CrossRefPubMedGoogle Scholar
  5. 5.
    Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585–601.CrossRefPubMedGoogle Scholar
  6. 6.
    Dangwal S, Stratmann B, Bang C, Lorenzen JM, Kumarswamy R, Fiedler J, et al. Impairment of wound healing in patients with type 2 diabetes mellitus influences circulating MicroRNA patterns via inflammatory cytokines. Arterioscler Thromb Vasc Biol. 2015;35(6):1480–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Dangwal S, Thum T. microRNA therapeutics in cardiovascular disease models. Annu Rev Pharmacol Toxicol. 2014;54:185–203.CrossRefPubMedGoogle Scholar
  8. 8.
    Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest. 2014;124(5):2136–46.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Icli B, Nabzdyk CS, Lujan-Hernandez J, Cahill M, Auster ME, Wara AK, et al. Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. J Mol Cell Cardiol. 2016;91:151–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chan YC, Roy S, Khanna S, Sen CK. Downregulation of endothelial microRNA-200b supports cutaneous wound angiogenesis by desilencing GATA binding protein 2 and vascular endothelial growth factor receptor 2. Arterioscler Thromb Vasc Biol. 2012;32(6):1372–82.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ramirez HA, Liang L, Pastar I, Rosa AM, Stojadinovic O, Zwick TG, et al. Comparative genomic, MicroRNA, and tissue analyses reveal subtle differences between non-diabetic and diabetic foot skin. PLoS One. 2015;10(8):e0137133.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li D, Wang A, Liu X, Meisgen F, Grunler J, Botusan IR, et al. MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. J Clin Invest. 2015;125(8):3008–26.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–325.CrossRefPubMedGoogle Scholar
  14. 14.
    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.CrossRefGoogle Scholar
  15. 15.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.CrossRefGoogle Scholar
  16. 16.
    Dangwal S, Schimmel K, Foinquinos A, Xiao K, Thum T. Noncoding RNAs in heart failure. Handb Exp Pharmacol. 2017;243:423–45.CrossRefPubMedGoogle Scholar
  17. 17.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.CrossRefGoogle Scholar
  19. 19.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106(1):23–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.CrossRefGoogle Scholar
  22. 22.
    Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297(5589):2056–60.CrossRefPubMedGoogle Scholar
  23. 23.
    Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 2002;16(6):720–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012;11(11):860–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res. 2013;113(6):676–89.CrossRefPubMedGoogle Scholar
  26. 26.
    Krutzfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 2007;35(9):2885–92.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Grunweller A, Hartmann RK. Locked nucleic acid oligonucleotides: the next generation of antisense agents? BioDrugs. 2007;21(4):235–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010;327(5962):198–201.CrossRefPubMedGoogle Scholar
  30. 30.
    Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008;36(4):1153–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G, et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther. 2008;19(12):1359–68.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16(6):1073–80.CrossRefPubMedGoogle Scholar
  33. 33.
    Ni X, Zhang Y, Ribas J, Chowdhury WH, Castanares M, Zhang Z, et al. Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumor xenografts. J Clin Invest. 2011;121(6):2383–90.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kondo T, Ishida Y. Molecular pathology of wound healing. Forensic Sci Int. 2010;203(1–3):93–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Hocking AM, Gibran NS. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res. 2010;316(14):2213–9.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366(9498):1736–43.CrossRefPubMedGoogle Scholar
  37. 37.
    Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25(1):9–18.CrossRefPubMedGoogle Scholar
  38. 38.
    Park LK, Maione AG, Smith A, Gerami-Naini B, Iyer LK, Mooney DJ, et al. Genome-wide DNA methylation analysis identifies a metabolic memory profile in patient-derived diabetic foot ulcer fibroblasts. Epigenetics. 2014;9(10):1339–49.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Maione AG, Brudno Y, Stojadinovic O, Park LK, Smith A, Tellechea A, et al. Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds. Tissue Eng Part C Methods. 2015;21(5):499–508.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Liang L, Stone RC, Stojadinovic O, Ramirez H, Pastar I, Maione AG, et al. Integrative analysis of miRNA and mRNA paired expression profiling of primary fibroblast derived from diabetic foot ulcers reveals multiple impaired cellular functions. Wound Repair Regen. 2016;24(6):943–53.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Polytarchou C, Iliopoulos D, Hatziapostolou M, Kottakis F, Maroulakou I, Struhl K, et al. Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Res. 2011;71(13):4720–31.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem. 2007;282(45):32582–90.CrossRefPubMedGoogle Scholar
  43. 43.
    Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell. 2001;107(6):789–800.CrossRefPubMedGoogle Scholar
  45. 45.
    Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G, et al. Down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem. 2011;286(32):28097–110.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wang Y, Hu C, Cheng J, Chen B, Ke Q, Lv Z, et al. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem Biophys Res Commun. 2014;446(4):1255–60.CrossRefPubMedGoogle Scholar
  47. 47.
    Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol. 2011;48(1):61–9.CrossRefGoogle Scholar
  48. 48.
    Harper RA, Grove G. Human skin fibroblasts derived from papillary and reticular dermis: differences in growth potential in vitro. Science. 1979;204(4392):526–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Sorrell JM, Baber MA, Caplan AI. Site-matched papillary and reticular human dermal fibroblasts differ in their release of specific growth factors/cytokines and in their interaction with keratinocytes. J Cell Physiol. 2004;200(1):134–45.CrossRefGoogle Scholar
  50. 50.
    Chen JX, Chen Y, DeBusk L, Lin W, Lin PC. Dual functional roles of Tie-2/angiopoietin in TNF-alpha-mediated angiogenesis. Am J Physiol Heart Circ Physiol. 2004;287(1):H187–95.CrossRefPubMedGoogle Scholar
  51. 51.
    Sainson RC, Johnston DA, Chu HC, Holderfield MT, Nakatsu MN, Crampton SP, et al. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood. 2008;111(10):4997–5007.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pase L, Layton JE, Kloosterman WP, Carradice D, Waterhouse PM, Lieschke GJ. miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood. 2009;113(8):1794–804.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124(6):720–30.CrossRefPubMedGoogle Scholar
  54. 54.
    Kim T, Veronese A, Pichiorri F, Lee TJ, Jeon YJ, Volinia S, et al. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med. 2011;208(5):875–83.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kane CD, Greenhalgh DG. Expression and localization of p53 and bcl-2 in healing wounds in diabetic and nondiabetic mice. Wound Repair Regen. 2000;8(1):45–58.CrossRefPubMedGoogle Scholar
  56. 56.
    Yang Y, Ahn YH, Gibbons DL, Zang Y, Lin W, Thilaganathan N, et al. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J Clin Invest. 2011;121(4):1373–85.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107(6):810–7.CrossRefGoogle Scholar
  58. 58.
    Nagpal N, Kulshreshtha R. miR-191: an emerging player in disease biology. Front Genet. 2014;5:99.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Kiezun A, Artzi S, Modai S, Volk N, Isakov O, Shomron N. miRviewer: a multispecies microRNA homologous viewer. BMC Res Notes. 2012;5:92.  https://doi.org/10.1186/1756-0500-5-92.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–56.CrossRefPubMedGoogle Scholar
  61. 61.
    Gupta SK, Bang C, Thum T. Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ Cardiovasc Genet. 2010;3(5):484–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Taliana L, Benezra M, Greenberg RS, Masur SK, Bernstein AM. ZO-1: lamellipodial localization in a corneal fibroblast wound model. Invest Ophthalmol Vis Sci. 2005;46(1):96–103.CrossRefPubMedGoogle Scholar
  63. 63.
    Katsuno T, Umeda K, Matsui T, Hata M, Tamura A, Itoh M, et al. Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell. 2008;19(6):2465–75.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 2002;21(7):1743–53.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Norton JD, Deed RW, Craggs G, Sablitzky F. Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 1998;8(2):58–65.PubMedGoogle Scholar
  66. 66.
    Chen L, Wu F, Xia WH, Zhang YY, Xu SY, Cheng F, et al. CXCR4 gene transfer contributes to in vivo reendothelialization capacity of endothelial progenitor cells. Cardiovasc Res. 2010;88(3):462–70.CrossRefPubMedGoogle Scholar
  67. 67.
    Bang C, Fiedler J, Thum T. Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation. 2012;19(3):208–14.CrossRefPubMedGoogle Scholar
  68. 68.
    Zhou Q, Gallagher R, Ufret-Vincenty R, Li X, Olson EN, Wang S. Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters. Proc Natl Acad Sci U S A. 2011;108(20):8287–92.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Usui ML, Underwood RA, Mansbridge JN, Muffley LA, Carter WG, Olerud JE. Morphological evidence for the role of suprabasal keratinocytes in wound reepithelialization. Wound Repair Regen. 2005;13(5):468–79.CrossRefPubMedGoogle Scholar
  70. 70.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. Science. 2003;302(5651):1704–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Sundaram GM, Common JE, Gopal FE, Srikanta S, Lakshman K, Lunny DP, et al. ‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature. 2013;495(7439):103–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Jin Y, Tymen SD, Chen D, Fang ZJ, Zhao Y, Dragas D, et al. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing. PLoS One. 2013;8(5):e64434.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hildebrand J, Rutze M, Walz N, Gallinat S, Wenck H, Deppert W, et al. A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo. J Invest Dermatol. 2011;131(1):20–9.CrossRefPubMedGoogle Scholar
  74. 74.
    van Solingen C, Araldi E, Chamorro-Jorganes A, Fernandez-Hernando C, Suarez Y. Improved repair of dermal wounds in mice lacking microRNA-155. J Cell Mol Med. 2014;18(6):1104–12.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    de Boer HC, van Solingen C, Prins J, Duijs JM, Huisman MV, Rabelink TJ, et al. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J. 2013;34(44):3451–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Lankisch TO, Voigtlander T, Manns MP, Holzmann A, Dangwal S, Thum T. MicroRNAs in the bile of patients with biliary strictures after liver transplantation. Liver Transpl. 2014;20(6):673–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Osipova J, Fischer DC, Dangwal S, Volkmann I, Widera C, Schwarz K, et al. Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab. 2014;99(9):E1661–5.CrossRefPubMedGoogle Scholar
  78. 78.
    Gidlof O, van der Brug M, Ohman J, Gilje P, Olde B, Wahlestedt C, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood. 2013;121(19):3908–17. S1-26CrossRefPubMedGoogle Scholar
  79. 79.
    Willeit P, Zampetaki A, Dudek K, Kaudewitz D, King A, Kirkby NS, et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ Res. 2013;112(4):595–600.CrossRefPubMedGoogle Scholar
  80. 80.
    Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2(100):ra81.CrossRefPubMedGoogle Scholar
  81. 81.
    Dangwal S, Thum T. MicroRNAs in platelet physiology and pathology. Hamostaseologie. 2013;33(1):17–20.CrossRefPubMedGoogle Scholar
  82. 82.
    Dangwal S, Thum T. MicroRNAs in platelet biogenesis and function. Thromb Haemost. 2012;108(4):599–604.CrossRefPubMedGoogle Scholar
  83. 83.
    Hatziapostolou M, Polytarchou C, Aggelidou E, Drakaki A, Poultsides GA, Jaeger SA, et al. An HNF4alpha-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. Cell. 2011;147(6):1233–47.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M, Meyers BC, et al. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature. 2014;508(7496):411–5.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.CrossRefPubMedGoogle Scholar
  86. 86.
    van der Ree MH, van der Meer AJ, de Bruijne J, Maan R, van Vliet A, Welzel TM, et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antivir Res. 2014;111:53–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Seema Dangwal
    • 1
    • 2
  • Ariana Foinquinos
    • 2
  • Thomas Thum
    • 2
  1. 1.Department of SurgeryBeth Israel Deaconess Medical CentreBostonUSA
  2. 2.Institute of Molecular and Translational Therapeutic StrategiesMedical School HannoverHannoverGermany

Personalised recommendations