Advertisement

Chimerism pp 81-103 | Cite as

Blood Typing Discrepancies

  • Opal L. Reddy
  • Dawn C. Ward
  • Andrea M. McGonigle
Chapter

Abstract

Blood typing discrepancies may be seen following both congenital and acquired chimerism and are most commonly encountered through blood bank testing that demonstrates ambiguous red blood cell (RBC) typing results. Congenital chimerism includes twin (placenta-associated) chimerism, dispermic chimerism, and tetragametic chimerism. Acquired chimerism may be the result of feto-maternal hemorrhage or may be iatrogenic, as a result of blood transfusion, hematopoietic stem cell transplantation (HSCT), or in vitro fertilization. When a chimeric etiology is suspected from laboratory testing, a thorough review of the clinical history is essential to identifying the likely cause. Further evaluation, particularly in cases of suspected congenital chimerism, may also include extended blood bank testing, human leukocyte antigen (HLA) typing, and molecular studies.

Keywords

Blood typing Discrepancy Chimerism Twin Dispermic Tetragametic Mixed field 

References

  1. 1.
    Lee TH, Paglieroni T, Ohto H, Holland PV, Busch MP. Survival of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long-term microchimerism in severe trauma patients. Blood. 1999;93:3127–39.PubMedGoogle Scholar
  2. 2.
    Lee T-H, Paglieroni T, Utter GH, Chafets D, Gosselin RC, Reed W, et al. High-level long-term white blood cell microchimerism after transfusion of leukoreduced blood components to patients resuscitated after severe traumatic injury. Transfusion. 2005;45:1280–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Draper NL, Conley C, Smith C, Benson K. Dispermic chimerism identified during HLA typing for stem cell transplantation. Transfusion. 2008;48:1398–402.CrossRefPubMedGoogle Scholar
  4. 4.
    Winberg J, Gustavsson P, Lagerstedt-Robinson K, Blennow E, Lundin J, Iwarsson E, et al. Chimerism resulting from parthenogenetic activation and dispermic fertilization. Am J Med Genet A. 2010;152A:2277–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Mifsud NA, Haddad AP, Hart CF, Holdsworth R, Condon JA, Swain M, et al. Serologic and molecular investigations of a chimera. Immunohematology. 1999;15:100–4.PubMedGoogle Scholar
  6. 6.
    Fung MK, Grossman BJ, Hillyer CD, Westhoff CM. Technical manual. 18th ed. Bethesda: AABB; 2014.Google Scholar
  7. 7.
    Angela E, Robinson E, North D. A case of twin chimerism. J Med Genet. 1976;13:528–30.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bird GW, Gibson M, Wingham J, Mackintosh P, Watkins W, Greenwell P. Another example of haemopoietic chimaerism in dizygotic twins. Br J Haematol. 1980;46:439–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Hsieh TT, Pao CC, Hor JJ, Kao SM. Presence of fetal cells in maternal circulation after delivery. Hum Genet. 1993;92:204–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 1996;93:705–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Maloney S, Smith A, Furst DE, Myerson D, Rupert K, Evans PC, et al. Microchimerism of maternal origin persists into adult life. J Clin Invest. 1999;104:41–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kühl-Burmeister R, Simeoni E, Weber-Matthiesen K, Milde A, Herwartz C, Neppert J, et al. Equal distribution of congenital blood cell chimerism in dizygotic triplets after in-vitro fertilization. Hum Reprod. 2000;15:1200–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Strain L, Dean JC, Hamilton MP, Bonthron DT. A true hermaphrodite chimera resulting from embryo amalgamation after in vitro fertilization. N Engl J Med. 1998;338:166–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Bonthron DT. XX/XY chimaerism after IVF. Prenat Diagn. 2004;24:578.CrossRefPubMedGoogle Scholar
  15. 15.
    van Dijk BA, Boomsma DI, de Man AJ. Blood group chimerism in human multiple births is not rare. Am J Med Genet. 1996;61:264–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Bluth MH, Reid ME, Manny N. Chimerism in the immunohematology laboratory in the molecular biology era. Transfus Med Rev. 2007;21:134–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Drexler C, Wagner T. Blood group chimerism. Curr Opin Hematol. 2006;13:484–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Hong X, Ying Y, Xu X, Liu Y, Chen Z, Lan X, et al. A dispermic chimera was identified in a healthy man with mixed field agglutination reaction in ABO blood grouping and mosaic 46, XY/46, XX karyotype. Transfus Apher Sci. 2013;48:223–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Grubic Z, Stingl Jankovic K, Kelecic J, Batinic D, Dubravcic K, Zunec R. A case of maternal-foetal chimerism identified during routine histocompatibility testing for hematopoietic stem cell transplantation. Int J Immunogenet. 2016;43:1–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Watkins WM, Yates AD, Greenwell P, Bird GW, Gibson M, Roy TC, et al. A human dispermic chimaera first suspected from analyses of the blood group gene-specified glycosyltransferases. J Immunogenet. 1981;8:113–28.CrossRefPubMedGoogle Scholar
  21. 21.
    Schoenle E, Schmid W, Schinzel A, Mahler M, Ritter M, Schenker T, et al. 46,XX/46,XY chimerism in a phenotypically normal man. Hum Genet. 1983;64:86–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Mosebach M, Parkner A, Jakubiczka S, Wieacker P, Heim MU. Dispermic chimerism identified during blood group determination and HLA typing. Transfusion. 2006;46:1978–81.CrossRefPubMedGoogle Scholar
  23. 23.
    Klein HG, Anstee DJ, editors. ABO, H, LE, P1PK, GLOB, I and FORS blood group systems. Mollison’s blood transfusion clinical medicine. Oxford: Wiley; 2014. p. 118–66.Google Scholar
  24. 24.
    Judd W, Johnson S, Storry J, editors. Investigating ABO typing problems. Judd’s methods immunohematology. Bethesda; 2008. p. 545.Google Scholar
  25. 25.
    Klein HG, Anstee DJ, editors. Immunology of leukocytes, platelets and plasma components. Mollison’s blood transfusion clinical medicine. Oxford: Wiley; 2014. p. 549–610.Google Scholar
  26. 26.
    Yamamoto F, Marken J, Tsuji T, White T, Clausen H, Hakomori S. Cloning and characterization of DNA complementary to human UDP-GalNAc: Fuc alpha 1----2Gal alpha 1----3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem. 1990;265:1146–51.PubMedGoogle Scholar
  27. 27.
    Yamamoto F, Clausen H, White T, Marken J, Hakomori S. Molecular genetic basis of the histo-blood group ABO system. Nature. 1990;345:229–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Stroncek DF, Konz R, Clay ME, Houchins JP, McCullough J. Determination of ABO glycosyltransferase genotypes by use of polymerase chain reaction and restriction enzymes. Transfusion. 1995;35:231–40.CrossRefPubMedGoogle Scholar
  29. 29.
    Anan K, Suzuki H, Iwasaki M, Kobayashi K. Genomic analysis of ABO chimeras and mosaics using hematopoietic colony-derived DNA. Transfusion. 1999;39:1247–55.CrossRefPubMedGoogle Scholar
  30. 30.
    Van Deerlin VM, Reshef R. Chimerism testing in allogeneic hematopoietic stem cell transplantation. In: Leonard DGB, editor. Molecular pathology in clinical practice. 2nd ed. Cham: Springer; 2016. p. 823–48.CrossRefGoogle Scholar
  31. 31.
    Pruss A, Heymann GA, Hell A, Kalus UJ, Krausch D, Dörner T, et al. Acute intravascular hemolysis after transfusion of a chimeric RBC unit. Transfusion. 2003;43:1449–51.CrossRefPubMedGoogle Scholar
  32. 32.
    Mollison PL, ABO, Lewis, Ii and P Groups. Blood transfusion clinical medicine. 6th ed. Oxford: Blackwell; 1979. p. 246–7.Google Scholar
  33. 33.
    Sapanara NL, Swami V, Besa EC. Aberrant blood grouping results in a patient with splenomegaly and thrombocytopenia. Lab Med. 2004;35:538–41.CrossRefGoogle Scholar
  34. 34.
    Cho D, Lee JS, Yazer MH, Song JW, Shin MG, Shin JH, et al. Chimerism and mosaicism are important causes of ABO phenotype and genotype discrepancies. Immunohematology. 2006;22:183–7.PubMedGoogle Scholar
  35. 35.
    Youssoufian H, Pyeritz RE. Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet. 2002;3:748–58.CrossRefPubMedGoogle Scholar
  36. 36.
    Tippett P. Blood group chimeras. A review. Vox Sang. 1983;44:333–59.PubMedGoogle Scholar
  37. 37.
    Judd WJ, Johnson ST, Storry J, editors. Investigating ABO typing problems. Judd’s methods immunohematology. Bethesda; 2008. p. 518.Google Scholar
  38. 38.
    Sharpe C, Lane D, Cote J, Hosseini-Maaf B, Goldman M, Olsson ML, et al. Mixed field reactions in ABO and Rh typing chimerism likely resulting from twin haematopoiesis. Blood Transfus. 2014;12:608–10.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Drexler C, Glock B, Vadon M, Staudacher E, Dauber E-M, Ulrich S, et al. Tetragametic chimerism detected in a healthy woman with mixed-field agglutination reactions in ABO blood grouping. Transfusion. 2005;45:698–703.CrossRefPubMedGoogle Scholar
  40. 40.
    Yu N, Kruskall MS, Yunis JJ, Knoll JHM, Uhl L, Alosco S, et al. Disputed maternity leading to identification of tetragametic chimerism. N Engl J Med. 2002;346:1545–52.CrossRefPubMedGoogle Scholar
  41. 41.
    Verdiani S, Bonsignore A, Casarino L, Ferrari GM, Zia SC, De Stefano F. An unusual observation of tetragametic chimerism: forensic aspects. Int J Legal Med. 2009;123(5):431.CrossRefPubMedGoogle Scholar
  42. 42.
    Manfroi S, Bontadini A, Bonifazi F, Bandini G, Conte R. Hematopoietic mixed chimerism after allogenic BMT. Transfusion. 2003;43:1758–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Bloch EM, Jackman RP, Lee T-H, Busch MP. Transfusion-associated microchimerism: the hybrid within. Transfus Med Rev. 2013;27:10–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Opal L. Reddy
    • 1
  • Dawn C. Ward
    • 1
  • Andrea M. McGonigle
    • 1
  1. 1.Wing-Kwai and Alice Lee-Tsing Chung Transfusion Service, Department of Pathology and Laboratory MedicineDavid Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations